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Abstract. The meta-pattern of the universe, first formulated by Rowlands and Diaz [2002], is a 
universal rewrite system (URS). This universal pattern finds a formulation in formal language 
theory centred around the fundamental semantic unit of the zero word or the zero string:                   
0 = X0X#

0. This is realized successively in the computational procedures of Turing machines, 
Post machines and Finite machines with two pushdown stores. 

1. Introduction 
A universal alphabet and rewrite system, first formulated by Rowlands and Diaz [1-6], has a strong 

claim to be the fundamental meta-system in Nature, sought by Bateson among others [7]. Essentially, it 

predicates an infinitely degenerate totality zero as the state of the universe at all time, which is realized 

by an infinite succession of zero-totality alphabets, each of which ensures uniqueness by incorporating 

its predecessor. The succession is not necessarily temporal, but rather supervenient, as time is a product 
of the process, rather than an assumed component. It is a succession of zero cardinalities, rather than a 

succession of infinite ones. 

The technical details of the process, which are remarkably simple as we would expect, are described 
in many publications but will be outlined more extensively in this paper. Essentially, there is only one 

process of transition between successive states of the universe, but it simultaneously requires two as-

pects, signified respectively by → and ⇒, and referred to, for convenience, as ‘conserve’ and ‘create’. 

A state of the universe is described by a zero-totality alphabet, in which each component is always 

accompanied by a conjugate (signified by #). The alphabet can then be concatenated either with one or 

more components of itself or ‘subalphabet’ (conserve) or with its entire self (create). The first aspect 

yields only automorphisms of the alphabet, whereas the second produces an entirely new alphabet. How-

ever, the new alphabet will only be valid if it both contains the previous alphabet and also fulfils the 

requirements of ‘conserve’ in that all the new components concatenate with the new alphabet to produce 
automorphisms of that alphabet. (The automorphisms differ in producing different ordering of the terms, 

but are identical in totality.) 

We can describe the process in practical terms using symbols, though symbols are not themselves 
necessary to the process. There is no fixed start or end state, though we can define a start and end for 

our convenience, and the process is effectively a fractal. The alphabet is not fixed but extends continu-
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ously, and the production rules are recreated at every stage, although there are generic similarities be-

tween the stages. The concatenation process can be conveniently described using replacement rules for 

the symbols, which are illustrated in the way that the automorphisms occur. At each stage, just one 
entirely new symbol is created, but this is accompanied by concatenations with all the previously created 

symbols. The replacement rules are determined by the requirement that the new symbol must also de-

scribe a new process – newness cannot be created by the symbol itself. Various things emerge from the 
symbolic representation and the need for it always to produce something new, including the fact that 

any symbol, other than the starting symbol R (or identity), does not concatenate with itself to produce 

R, but rather its conjugate, and that successive new symbols following R, beginning, say with A and B, 

concatenate to produce AB, which also concatenates with itself to produce the conjugate of R, which 

we represent as R#. In principle, an anticommutativity is introduced into the system to ensure that A and 

B are new and not just a new representation of R. The anticommutativity also introduces an aspect of 

closure and discreteness, not previously assumed. It additionally means that the only way to continue 

the sequence is to introduce new pairs of symbols which are anticommutative to each other but commu-

tative to all the others. The series can then continue to infinity with the uniqueness of each new symbol 
assured by the fact that it has a unique partner with which it anticommutes. In effect the alphabet con-

tinues to infinity by incorporating a generically repeating aspect. 

In addition, entropy is built into the structure in a significantly pure form in that each successive 
stage effectively doubles the alphabet for the previous one by adding a new symbol and all its concate-

nations. If the number of independent ‘microstates’ is W = 2n at level n, then taking a logarithmic func-

tion of this reveals that the entropy is simply an index of the relative level reached. In effect, entropy is 

a description of the working of the system of Nature, not an additional property requiring explanation 

[4,6,8]. The system is also deterministic in that no symbol repeats; each is distinct, only repeating ge-

nerically at a higher level. 

The system has, since its first conception, been used in many applications, for example, in generating 

mathematical structures, such as the real numbers, integers, quaternions, Clifford algebra, and even 

Conway’s surreal numbers, in addition to those of mathematical logic. The mathematics that it resembles 
most is Clifford algebra, suggesting the particular significance of this algebra in the description of many 

aspects of Nature, but no mathematical structure is excluded. The only basic assumption is totality zero 

and no further assumptions need to be made to generate them. It is even possible to generate the full 

sequence of Cayley-Dickson algebras as mathematics, though the evidence suggests that the primary 

version has no need to introduce antiassociativity along with anticommutativity. In fact, the rewrite 

system as a purely natural process needs no inputs precisely because it is not antiassociative. Antiasso-

ciativity forces us to choose between options, whereas anticommutativity merely forces us into the only 

available one. When time emerges as an intrinsic component of physics and all sciences based upon it, 

we see that antiassociativity would require time as well as space reversal at a fundamental level, and, in 

effect, time, because of the algebraic structure which emerges with its definition, has an associativity 
which cannot be changed. 

By contrast with mathematics, it has been shown that physics has a special structure in that its four 

basic parameters, mass, time, charge and space have the properties (real / imaginary, conserved / non-
conserved, dimensional / nondimensional) and mathematical structures (real, complex, quaternion and 

complex quaternion) required by the first four alphabets starting from R, and that these, when combined 

into the highest alphabet, lead to structures which concatenate to a complete zero, meaning that all sub-

sequent alphabets will automatically become zero without being specified. This nilpotent structure is 

ubiquitous in physics at all levels and in all natural systems defined by the conservation of energy or 

Newton’s third law of motion, or with a changing energy that can be defined by a known process. In 

effect, the principles of relativistic quantum mechanics, defined by the nilpotent structure, become the 

template for investigating all higher order systems [9-21]. A parallel system of genetics, also using four 

component units (A, T, G, C) uses exactly the same 64-part mathematics as physics (the algebra of a 
double space or space and conjugate space); while the identical algebra also leads to fundamental parti-

cle structures [4,22-25]. 



Vigier Centenary 2021
Journal of Physics: Conference Series 2197 (2022) 012024

IOP Publishing
doi:10.1088/1742-6596/2197/1/012024

3

 

The structures from the rewrite system are determined by characteristic mathematical patterns (in 

particular, duality, anticommutativity and symmetry-breaking, associated with the numbers 2, 3 and 5) 

which scale upward via a replacement of the original components by higher order ones, and which 
ultimately include such areas as nuclear physics, atomic structure and the Periodic Table, chemistry, 

systems (physical, biological, higher order and constructed), physiology, evolutionary and cell biology, 

and consciousness among others, as has been demonstrated in a long series of publications. Computing 
aspects include automated reasoning or AI and the complexity problem with an investigation of the p / 

np question by Marcer and Rowlands suggesting that the structured nature of the rewrite system and the 

regularity of its application must lead to an answer favouring the p (or polynomial) alternative [4, 26-

32]. A category theory application is currently under development by the present authors. 

A key area of investigation is in the theory of formal languages in computer science. Applications of 

this in current technology include programming languages such as C++, Java, xml, html, extensible 

markup languages, compiling, parsing (text mining). The aim of this paper is to reveal the formal lan-

guage aspect of the rewrite system, and to demonstrate that the pattern of this system conforms to the 

rules of its own language generation structure and that this language is recognizable by a Turing machine 
algorithm. In principle, we show that the rewrite system can simulate language defined by a set of mean-

ingful pattern units (‘words’). This language, which we identify as the language of nature, is a type 1 

(context sensitive) language.  
Current formal language theory suggests that an infinite alphabet requires a finite repeating unit and 

an infinite countable set of symbols. These are related to the duality and anticommutativity (2 and 3) of 

the rewrite system. Diaz and Rowlands have already used the rewrite structure to develop computer 

language in terms of an algebraic interpretation of the infinite square roots of –1 [3], including a special 

unit repeated (quaternions), and extending to infinity in Clifford algebra, which was itself originally 

developed from the closed group of quaternions plus Grassmann’s infinite tensor outer product. We 

have already shown that physics, derived from the rewrite system, has such a structure, combining nilpo-

tent fermions as a generically repeated unit, with an infinite Hilbert space derived from the Grassmann 

algebra. In fact the rewrite system itself is a universal version of this pattern, probably the most general 
that can be derived. The remainder of the paper shows how to construct a computer-compatible simula-

tion of the rewrite system, up to a limit determined by the user. 

 

2. The URS as a formal language can be expressed using two types of alphabets 
 

The finite alphabet form of the URS indicates that there exist four types of characters 

 

1 –1 i j 
a b c e 

X0 X#
0 X2u + 1 X2u + 2 

 

where u = �(� − 1) =
�

�
(2(� − 1) − 3 − (−1)���) ∈ {0, 1, 2, 3, …} and the order of the URS is 2� 

where n ∈ {1, 2, 3, …}.  

 

The infinite alphabet form of the URS shows the infinite number of quaternion cycles  
 

1 –1 i1 j1 i2 j2 i3 … 

a b c1 e1 c2 e2 c3 … 

X0 X#
0 X1 X2 X3 X4 X5 … 

 
The URS can be represented as a language consisting of an infinite sequence of empty strings 
 

LURS = {ϵ1 = ab, ϵ2 = abac1bc1, ϵ3 = abac1bc1ae1be1ac1e1bc1e1,  
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ϵ4 = abac1bc1ae1be1 ac1e1bc1e1ac2bc2 ac2c1bc2c1ac2e1bc2e1ac2c1e1bc2c1e1,   
ϵ5= 

abac1bc1ae1be1ac1e1bc1e1ac2bc2ac2c1bc2c1ac2e1bc2e1ac2c1e1bc2c1e1ae2be2ae2c1be2c1ae2e1be2e1ae2c1e1be2c1

e1ae2c2be2c2ae2 c2c1be2c2c1ae2c2e1be2c2e1ae2c2c1e1be2c2c1e1,  

ϵ6=abac1bc1ae1be1ac1e1bc1e1ac2bc2ac2c1bc2c1ac2e1bc2e1ac2c1e1bc2c1e1ae2be2ae2c1be2c1ae2e1be2e1ae2c1

e1be2c1e1ae2c2be2c2ae2c2c1be2c2c1ae2c2e1be2c2e1ae2c2c1e1be2c2c1e1ac3bc3ac3c1bc3c1ac3e1bc3e1ac3c1e1bc3c1

e1ac3c2bc3c2ac3c2c1bc3c2c1ac3c2e1bc3c2e1ac3c2c1e1bc3c2c1e1ac3e2bc3e2ac3e2c1bc3e2c1ac3e2e1bc3e2e1ac3e2c1e

1bc3e2c1e1ac3e2c2bc3e2c2 ac3e2c2c1bc3e2c2c1 ac3e2c2e1bc3e2c2e1ac3e2c2c1e1bc3e2c2c1e1, …} 

 
3. URS generation via tensor products  
 

      The first six orders of the Universal Rewrite System (URS) written as Clifford Algebra tensor 

products of anti-commutative quaternion cycles  

 

           order 2 ± 1 

order 4 ± 1, ± i1 

 order 8 ± 1, ± i1, ± j1, ± i1j1 

 order 16 ± 1, ± i1, ± j1, ± i1j1, ± i2, ± i2i1, ± i2j1, ± i2i1j1 

 order 32 ± 1, ± i1, ± j1, ± i1j1, ± i2, ± i2i1, ± i2j1, ± i2i1j1, 

  ± j2, ± j2i1, ± j2j1, ± j2i1j1, ± j2i2, ± j2i2i1, ± j2i2j1, ± j2i2i1j1 

 order 64 ± 1, ± i1, ± j1, ± i1j1, ± i2, ± i2i1, ± i2j1, ± i2i1j1, 

  ± j2, ± j2i1, ± j2j1, ± j2i1j1, ± j2i2, ± j2i2i1, ± j2i2j1, ± j2i2i1j1 

  ± i3, ± i3i1, ± i3j1, ± i3i1j1, ± i3i2, ± i3i2i1, ± i3i2j1, ± i3i2i1j1, 

  ± i3j2, ± i3j2i1, ± i3j2j1, ± i3j2i1j1, ± i3j2i2, ± i3 j2i2i1,  

  ± i3j2i2j1, ± i3j2i2i1j1 

 

There are two ways to generate the empty strings in the URS. Both procedures are connected by the 
conserve part of the CREATE and CONSERVE algorithms of the URS. The first procedure involves 

taking an infinite tensor product of the alphabetic symbols. The second way is to use the replacement 

rules of the URS grammar. (Note: to build transition tables for the different types of machines running 

through the Chomsky hierarchy of generative grammars → rewrite all words of URS using the same 

alphabets = finite alphabet and infinite alphabet.) 

The behaviour of the URS symbols can be represented in the following identities:  

 

 aa = a  

 ab = ba = b 
 ac = ca = c 

 bc = cb 

 ae = ea = e 
 be = eb  

 ce = bec 

 ec = bce 

 bcbe = bce 

 bcbc = bcc 

 bebe = bee 

 

and the tensor products presented in the left of the table shown below reduce to the words of the URS 

in the right side of the table shown below: 
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Tensor Product = 

Conserve part of URS 

processing 

 ϵn ϵn (infinite alphabet) 

(a × b) (a, b) ab ab 

(a × b) ⊗ (a × c) 
((a, a), (a, c), (b, a), (b, 

c)) 
aaacbabc = abacbc abac1bc1 

(a × b) ⊗ (a × c) ⊗ (a 

× e) 

((a, a, a), (a, c, a), (b, 

a, a), 
(b, c, a), (a, a, e), (a, c, 

e), 

(b, a, e), (b, c, e)) 

aaaacabaabcaaaeaceba

ebce 

= 

abacbcaebeacebce 

abac1bc1ae1be1ac1e1bc1

e1 

(a × b) ⊗ (a × c) ⊗ (a 

× e) ⊗ 

(a × c) 

((a, a, a, a), (a, c, a, a), 
(b, a, a, a), 

(b, c, a, a), (a, a, e, a), 

(a, c, e, a), 
(b, a, e, a), (b, c, e, a), 

(a, a, a, c), (a, c, a, c), 

(b, a, a, c), 

(b, c, a, c), (a, a, e, c), 

(a, c, e, c), 

(b, a, e, c), (b, c, e, c)) 

aaaaacaabaaabcaaaaea

aceabaeabceaaaacacac

baacbcacaaecacecbaec

bcec 

= 
abacbcaebeacebceacbc

accbccacebceaccebcce 

abac1bc1ae1be1 

ac1e1bc1e1ac2bc2 

ac2c1bc2c1ac2e1bc2e1ac2

c1e1bc2 

c1e1 

(a × b) ⊗ (a × c) ⊗ (a 

× e) ⊗ 

(a × c) ⊗ (a × e) 

((a, a, a, a, a), (a, c, a, 
a, a), 

(b, a, a, a, a), 

(b, c, a, a, a), (a, a, e, 

a, a), 

(a, c, e, a, a), 

(b, a, e, a, a), (b, c, e, 

a, a), 

(a, a, a, c, a), (a, c, a, c, 

a), 
(b, a, a, c, a), 

(b, c, a, c, a), (a, a, e, 

c, a), 
(a, c, e, c, a), 

(b, a, e, c, a), (b, c, e, 

c, a), 

(a, a, a, a, e), 

(a, c, a, a, e), (b, a, a, 

a, e), 

(b, c, a, a, e), (a, a, e, 

a, e), 

(a, c, e, a, e), 
(b, a, e, a, e), (b, c, e, 

a, e), 

aaaaaacaaabaaaabcaaa

aaeaaaceaabaeaabceaa
aaacaacacabaacabcaca

aaecaacecabaecabceca

aaaaeacaaebaaaebcaae

aaeaeaceaebaeaebceae

aaaceacacebaacebcace

aaeceacecebaecebcece 

= 

abacbcaebeacebceacbc

accbccacebceaccebcce

aebeaecbecaeebeeaece
beceaecbecaeccbeccae

cebeceaeccebecce 

 

abac1bc1ae1be1ac1e1bc1

e1ac2b 
c2ac2c1bc2c1ac2e1bc2e1a

c2c1e1bc2c1e1ae2be2ae2c

1be2c1ae2e1be2e1ae2c1e1

be2c1e1ae2c2be2c2ae2 

c2c1be2c2c1ae2c2e1be2c2

e1ae2c2c1e1be2c2c1e1 
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(a, a, a, c, e), (a, c, a, c, 

e), 

(b, a, a, c, e), 

(b, c, a, c, e), (a, a, e, 
c, e), 

(a, c, e, c, e), 

(b, a, e, c, e), (b, c, e, 

c, e)) 

(a × b) ⊗ (a × c) ⊗ (a 

× e) ⊗ 

(a × c) ⊗ (a × e) ⊗ (a 

× c) 

((a, a, a, a, a, a), (a, c, 

a, a, a, a), (b, a, a, a, a, 
a), 

(b, c, a, a, a, a), (a, a, 

e, a, a, a), (a, c, e, a, a, 

a), 

(b, a, e, a, a, a), (b, c, 

e, a, a, a), 

(a, a, a, c, a, a), (a, c, a, 
c, a, a), (b, a, a, c, a, 

a), 

(b, c, a, c, a, a), (a, a, 
e, c, a, a), 

(a, c, e, c, a, a), 

(b, a, e, c, a, a), (b, c, 
e, c, a, a), 

(a, a, a, a, e, a), 

(a, c, a, a, e, a), (b, a, 

a, a, e, a), 

(b, c, a, a, e, a), (a, a, 

e, a, e, a), 

(a, c, e, a, e, a), 

(b, a, e, a, e, a), (b, c, 

e, a, e, a), 
(a, a, a, c, e, a), (a, c, a, 

c, e, a), 

(b, a, a, c, e, a), 
(b, c, a, c, e, a), (a, a, 

e, c, e, a), 

(a, c, e, c, e, a), 
(b, a, e, c, e, a), (b, c, 

e, c, e, a), 

(a, a, a, a, a, c), 

(a, c, a, a, a, c), (b, a, 

a, a, a, c), 

(b, c, a, a, a, c), (a, a, 
e, a, a, c), 

(a, c, e, a, a, c), 

(b, a, e, a, a, c), (b, c, 
e, a, a, c), 

aaaaaaacaaaabaaaaabc

aaaaaaeaaaaceaaabaea

aabceaaaaaacaaacacaa

baacaabcacaaaaecaaac

ecaabaecaabcecaaaaaa

eaacaaeabaaaeabcaaea
aaeaeaaceaeabaeaeabc

eaeaaaaceaacaceabaac

eabcaceaaaeceaacecea
baeceabceceaaaaaacac

aaacbaaaacbcaaacaaea

acaceaacbaeaacbceaac
aaacacacacacbaacacbc

acacaaecacacecacbaec

acbcecacaaaaecacaaec

baaaecbcaaecaaeaecac

eaecbaeaecbceaecaaac

ecacacecbaacecbcacec

aaececacececbaececbc

ecec 

= 
abacbcaebeacebceacbc

accbccacebceaccebcce

aebeaecbecaeebeeaece
beceaecbecaeccbeccae

cebeceaeccebecceacbc

accbccacebceaccebcce
accbccacccbcccaccebc

ceacccebccceacebceac

ecbcecaceebceeaceceb

ceceacecbcecaceccbce

ccacecebceceaceccebc

ecce 
 

abac1bc1ae1be1ac1e1bc1

e1 ac2bc2 

ac2c1bc2c1ac2e1bc2e1 

ac2c1e1bc2c1e1ae2be2 

ae2c1be2c1ae2e1be2e1 

ae2c1e1be2c1e1ae2c2be2c

2ae2 
c2c1be2c2c1ae2c2e1be2c2

e1 

ae2c2c1e1be2c2c1e1ac3bc

3 ac3c1bc3c1ac3e1bc3e1 

ac3c1e1bc3c1e1ac3c2bc3c

2 

ac3c2c1bc3c2c1ac3c2e1bc

3c2e1 

ac3c2c1e1bc3c2c1e1ac3e2

bc3e2 

ac3e2c1bc3e2c1ac3e2e1bc

3e2e1 ac3e2c1e1bc3e2c1e1 
ac3e2c2bc3e2c2 

ac3e2c2c1bc3e2c2c1 

ac3e2c2e1bc3e2c2e1 

ac3e2c2c1e1bc3e2c2c1e1 
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The URS represented as one long sequence of empty strings might be justification for the one fermion 

theory of the universe  

 
ϵ = ϵ1ϵ2ϵ3ϵ4ϵ5ϵ6…. 

 

Every new symbol introduced by create has to be tested by conserve to maintain the pattern and prevent 

anomalies. Subsequently, the conserve process is responsible for the size of each ϵn, n ∈ {1, 2, 3, …}. 

 
 

 

 

 

 

 

 

 

 

 
 

 

 

(a, a, a, c, a, c), (a, c, a, 

c, a, c), 

(b, a, a, c, a, c), 

(b, c, a, c, a, c), (a, a, 
e, c, a, c), 

(a, c, e, c, a, c), 

(b, a, e, c, a, c), (b, c, 

e, c, a, c), 

(a, a, a, a, e, c), 

(a, c, a, a, e, c), (b, a, 
a, a, e, c), 

(b, c, a, a, e, c), (a, a, 

e, a, e, c), 
(a, c, e, a, e, c), 

(b, a, e, a, e, c), (b, c, 

e, a, e, c), 
(a, a, a, c, e, c), (a, c, a, 

c, e, c), 

(b, a, a, c, e, c), 

(b, c, a, c, e, c), (a, a, 

e, c, e, c), 

(a, c, e, c, e, c), 

(b, a, e, c, e, c), (b, c, 

e, c, e, c)) 
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4. URS generation via grammar replacement rules  
 

Venn Diagram of Grammar Types: 

 
* conjectured as plausible – yet to be completely determined 

 

In the Chomsky hierarchy, a phrase structure grammar G is a quadruple, G = (VN, VT, P, S), VN is 

the set of variable symbols, VT is the set of terminal symbols, P is the set of production rules, S is the 

starting symbol. The grammar of the URS, GURS, is a triple, GURS = (VN-URS, PURS, ϵ), VT-URS does not 

exist in GURS. The existence VT-URS would terminate the application of the production rules PURS. Since 

the URS never ends, the production rules PURS never stop being applied therefore VT-URS does not exist. 
However, for practical coding purposes, the set of symbols. {X0, X#

0, X2u+1, X2u+2} would serve as the 

set of terminal symbols, VT-URS, to create an arbitrary termination point for computing hardware.  

The production rules, PURS, are as follows: 

 

(0) create first new symbol (assume a nonzero symbol): ϵ → a 

(1) conserve first zero totality: a → ab  

(2.1) conserve zero totality: ab → aab 
(2.2) conserve zero totality: ab → bab 

(3.1) create a new symbol: abab → abacbc 

(3.2) create a new symbol: baab→ baacbc 
 

Rules (2) and (3) split into positive and negative versions of each other. Both options lead to the 

same result but either branch must be rule replaced in a certain sequence consistently and independently 
of each other to give the same universal rewrite system. (2.1) conserve positive must be replaced by 

(2.2) negative substitution and vice versa. To apply the rules to generate the universal rewrite system:  

 

(0) create ϵ → a                                              

(1) conserve a → ab  

(2.1) conserve positive ab→ aab   

OR 

(2.1) conserve negative ab→ bab 

Finite alphabet                 Infinite 

alphabet

Finite alphabet                 Infinite alphabet Finite alphabet                 Infinite alphabet

Turing machine Variable
Turing 
machine*

Linear
bounded
automata

Variable
LBA*

Pushdown
automata

Variable PA*

Finite
automata

Variable
FA

Type 0 recursively enumerable 

Type 1 context sensitive

Type 2 context free

Type 3 Regular



Vigier Centenary 2021
Journal of Physics: Conference Series 2197 (2022) 012024

IOP Publishing
doi:10.1088/1742-6596/2197/1/012024

9

 

(2.2) negative substitution into conserve positive a(ab) → a(bab)  
OR 

(2.2) positive substitution into conserve negative b(ab) → b(aab) 
(3) create from negative substitution into conserve positive abab → abacbc 

(3) create from positive substitution into conserve negative baab → baacbc 

 
In (2.2), we are using a substitution rule (highlighted in bold). This anticipatory process is necessary 

to create the spaces for the symbols coming, in the same way as we create the space, by anticipation, for 

the expanded algebra in the basic URS. In this way it explains how the create process actually 

‘calculates’ the size of the new algebra which emerges. The URS generated by PURS, the URS grammar 

replacement rules, is the same URS independently of whether the URS language is expressed using the 

finite or the infinite alphabet. The infinite alphabet will be used for the URS the rest of this paper.  

 

LURS is generated from an infinite number of tensor products: ϵ1 = (a × b), ϵ2 = (a × b) ⊗ (a × c1), … 

 

PURS 1.0 in the style of [1] PURS 2.0 

create a new symbol:  

(X, X*)(X, X*) ⇒ (X, X*, Y, Y*) 

conserve zero totality:  

X(X, X*) → (X, X*) 

X*(X, X*) → (X*, X) = (X, X*) 

[The zero-totality alphabets are not ordered n-
tuples; the conserve rule of the rewrite system 

produces automorphic alphabets; generally, (X, X*) 

= (X*, X)] 
((+) bias reflecting the handedness of nature) 

0 ⇒ R                                                              

RR ⇒ (R, R*)                                                      

R(R, R*) → (R, R*)  

R*(R, R*) → (R*, R)  

(R, R*) (R, R*) ⇒ (R, R*, A, A*)                           

R(R, R*, A, A*) → (R, R*, A, A*)  

R*(R, R*, A, A*) → (R, R*, A, A*) 

A(R, R*, A, A*) → (R, R*, A, A*) 

A*(R, R*, A, A*) → (R, R*, A, A*) 

(R, R*, A, A*)(R, R*, A, A*) ⇒  
(R, R*, A, A*, B, B*, AB, AB*) 

and so on 

PURS using the finite alphabet  
(0) create first new symbol  

(assume a symbol ≠ ϵ): ϵ → a 

(1) conserve first zero totality: a → ab 

(2) conserve zero totality: ab→ aab 

(2) conserve zero totality: ab → bab  
(3) create a new symbol: abab → abacbc 

(3) create a new symbol: baab→ baacbc 

Application of PURS using the finite 
alphabet  

(0) create ϵ → a                               

(1) conserve a → ab 

(2.1) conserve positive ab→ aab 
OR 

(2.1) conserve negative ab→ bab                 

(2.2) negative substitution into conserve 
positive a(ab)→ a(bab) 

OR 

(2.2) positive substitution into conserve 

negative b(ab) → b(aab)                                   

(3) create from negative substitution into 

conserve positive abab→ abacbc 

(3) create from positive substitution into 
conserve negative baab → baacbc                     

PURS using the infinite alphabet   
(using conserve positive and negative 

substitution into conserve positive rules) 

(0) ϵ → a 

(1) → (ab) 

(2.1) → (a(ab))                                              

(2.2) → (a(bab))                                            

(3) → (ab)(ac1bc1) 
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(2.1) → (a(ab))(ac1bc1)                                 

(2.2) → (a(bab))ac1bc1 

(3) → (ab)(ac1bc1)(ae1be1)  

(2.1) → (a(ab))(ac1bc1)(ae1be1) 
(2.2) → (a(bab))(ac1bc1)(ae1be1)  

(3) → (ab)(ac1bc1)(ae1be1)(ac1e1bc1e1)  

and so on  

 

In the table, the left-hand column lists the replacement rules of the original Rowlands-Diaz universal 

rewrite system, as discussed in the Introduction (version 1.0). Each successive alphabet is represented 

by a string of letters, R, A, B, C, etc., with their conjugates R*, A*, B*, C* ..., which also generate 

composite structures, such as AB, AC, ABC, ABC*… The symbols are always taken in pairs with their 

conjugates, ensuring totality zero at all levels. The first complete alphabet is (R,R*), the successive 

alphabets are then (R,R*, A,A*); (R,R*, A,A*, B,B*, AB,AB*); (R,R*, A,A*, B,B*, AB,AB*, C,C*, 
AC,AC*, BC,BC*, ABC,ABC*); and so on. Each new alphabet requires the creation of a new symbol 

and its conjugate: (R,R*); (A,A*); (B,B*); (C,C*) … The creation of a new alphabet is symbolized by 

⇒, so (R,R*)(R,R*) ⇒ (R,R*, A,A*) means the first alphabet leads to the creation of the second …  

The composition of the new alphabet is determined by the simultaneous application of an anticipatory 

conservation property, symbolized by →, in which the concatenation of the new alphabet with each of 
its terms leads to an automorphism with the same terms rearranged in a new order. As the order of terms 

makes no difference to the alphabet as a totality, the automorphisms are versions of the same alphabet. 

So (R,R*, A,A*) successively concatenated with R, R*, A and A* becomes (R,R*, A,A*); (R*,R, 

A*,A); (A,A*, R*,R) and (A*,A, R,R*). Rather than ‘multiplication’, we should see the concatenation 

as a system of replacement, using a set of replacement rules. While R takes on the form of an identity 

element and R* switches terms with their conjugates, A, B, C, D, etc concatenate with themselves to 
produce R*, not R, and the concatenation of AB with itself is ‘anticommutative’, again producing R* 

rather than R. These results are only possible because each symbol is always paired with its conjugate 

and the order between these is not significant in absolute terms. The create-conserve combination is 

tightly controlled, each term having unique properties forced upon them. The successive pairs (A, B), 

(C, D), etc. are anticommutative within the pairing, but commutative everywhere else. This is reflected 

in the machine descriptions where the pairings are referred to as (R(2u+1), R(2u+2)). 

For the rewrite rules adapted for language generation (2.0), we use a different symbolism, with X(0) 

replacing R, and X(1), X(2), X(3), etc. replacing A, B, C, etc., and # replacing *. The commas are also 

removed. In this case we read operations from right to left, rather than left to right. To keep continuity 

in the process, the rewrite rules output from one replacement rule becomes the input for the next, i.e. 
working out output from rules rather than rules from output, forward rather than reverse engineering. 

This is to set up the rewrite rules as a practical process, and we recommend the reader, following 

Turing’s original conception of his machine, to work out the computations by hand using pencil and 
paper. To set up the process, we have to read the operations in 1.0 from right to left. In the first section 

of the right-hand column, (0) and (1) start the process, leading to (2). (2) and (3) are the conjugate 

conserve rules X(0)X(0)# → X(0)X(0)X#(0) and X(0)X#(0) → X#(0)X(0)X#(0) written in reverse. The 
key step now is to now to insert the output of (3) in bold into that part of the output of (2) (also in bold) 

which was the same as the input, that is X#(0)X(0)X#(0) in (3) replaces X(0)X#(0) in (2), producing 

X(0)X#(0)X(0)X#(0). This allows the creation of the next alphabet to take place with the right number 

of terms, with the index shifting by 1 to give X(0)X#(0)X(1)X#(1), in what is identified as step (4). 

Exactly the same process continues into the next iteration of an alphabet with the procedures following 

in the same order. 
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5. The global language of the Universal Rewrite System (URS) 
 

From a global interpretation, the language of the URS, LURS, is the set of words = {��

: n ≥ 0}. The 0 

symbol is a Clifford algebra totality, made up of + and – versions of each symbol. In the following table, 

the symbol ‘=’ represents the number of algebraic terms (+ and –) within each 0 totality. For each order 

n, the number of symbols per order in the URS = 2n, and the number of words per order in the URS = 

2n-1. 

 

n   n – 1  0 = 2��� 0�

 ��


 

0   0��
 = 0 = ±1 ���

= ab 

1 0 0 = ±1 0��
 = 00  

= ±1, ± i1 
���

= abac1bc1 

2 1 00 = ±1, ± i1 0��
= 0000 

= ±1, ± i1, ± j1, 

 ± i1j1 

���
= 

abac1bc1ae1be1ac1

e1bc1e1 

3 2 0000 

= ±1, ± i1, ± j1, 

 ± i1j1 

0��
 = 

00000000 

= ±1, ± i1, ± j1, 

 ± i1j1, 

± i2, ± i2i1, ± 

i2j1, ± i2i1j1 

���
= 

abac1bc1ae1be1 

ac1e1bc1e1ac2bc2a

c2c1bc2c1ac2e1bc2 

e1ac2c1e1bc2 

c1e1 

4 3 00000000 

= ±1, ± i1, ± j1, 

 ± i1j1, 

± i2, ± i2i1,  ± 

i2j1, ± i2i1j1 

0��
= 

00000000000000

00 = ± 1, ± i1, 

 ± j1, ± i1j1, ± i2, 

± i2i1, ± i2j1, 

±i2i1j1, ± j2, ± j2i1, 

± j2j1, ± j2i1j1, 

 ± j2i2, ± j2i2i1, 

± j2i2j1, ± 

j2i2i1j1 
 

���  = 

abac1bc1ae1be1ac1

e1bc1e1ac2bc2ac2c1

bc2c1ac2e1bc2e1ac2

c1e1bc2c1e1ae2be2a

e2c1be2c1ae2e1be2 

e1ae2c1e1be2c1

e1a 

e2c2be2c2ae2 

c2c1be2c2c1ae2c2e1

be2c2e1ae2c2c1e1b 

e2c2c1e1 

5 4 00000000000

00000 = ± 1, ± i1, 

 ± j1,  ± i1j1, ± i2, 

± i2i1, ± i2j1, 

±i2i1j1, ± j2, ± j2i1, 

± j2j1, ± j2i1j1, 

 ± j2i2, ± j2i2i1, 

± j2i2j1,  ± 

j2i2i1j1 
 

0��
= 

00000000000000

00000000000000

0000 = ± 1, ± i1,  ± 

j1, ± i1j1, ± i2,  ± 

i2i1, ± i2j1,  ± i2i1j1,

±j2, ± j2i1, ± j2j1,  ± 

j2i1j1,  ± j2i2,  ± 
j2i2i1, 

± j2i2j1, ± 

j2i2i1j1, ± i3, ± i3i1, 

± i3j1, ± i3i1j1, ± 

i3i2, ± i3i2i1, 

���
= 

abac1bc1ae1be1ac1

e1bc1e1 

ac2bc2ac2c1bc2c1a

c2e1bc2e1ac2c1e1b 
c2c1e1ae2be2ae

2c1be2c1ae2e1be2e1

ae2 

c1e1be2c1e1ae2

c2b 

e2c2ae2 

c2c1be2c2c1ae2

c2e1be2c2e1ae2c2c1 

e1be2c2c1e1ac3

bc3ac3c1bc3c1ac3e1

bc3 
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± i3i2j1, ± 

i3i2i1j1,± i3j2,  ± 

i3j2i1, 

± i3j2j1, ± 

i3j2i1j1, ± i3j2i2, 

± i3 j2i2i1, ± 

i3j2i2j1, ± i3j2i2i1j1 

 

e1ac3c1e1bc3c1

e1a 
c3c2bc3c2ac3c2

c1b 

c3c2c1ac3c2e1b
c3c2 

e1ac3c2c1e1bc3

c2c1e1ac3e2bc3e2ac

3 

e2c1bc3e2c1ac3

e2e1bc3e2e1ac3e2c1 

e1bc3e2c1e1ac3

e2c2bc3e2c2 

ac3e2c2c1bc3e2c2c1

ac3e2c2e1bc3e2c2e1

ac3e2c2c1e1bc3e2c2

c1e1 

 … … … … … 

 
6. Language generation 
To produce sentences in a particular language requires knowledge of the rules of sentence formation. 

Sentient intelligence possesses this ability and computational devices simulate this ability. But the 
universe itself seems to exist on a simple fundamental meta-pattern (never repeated) that can be 

formulated as a language with appropriate grammar rules. This universal pattern was discovered by 

Peter Rowlands and Bernard Diaz, together with the initial form of the grammar rules [1-6]. A 

formulation of the grammar rules of the universal rewrite system (URS) adapted to formal language 

theory engineered by Sydney Rowlands, assisted by Peter Rowlands, faithfully reproduces the same 

output as the original formulation of the grammar rules. However, this adapted and re-engineered 
version of the grammar rules introduces the universal rewrite system to the subject of formal language 

analysis and computation theory, which might have applications for computerized simulation of the 

physical laws operating in the universe, in addition to technological consequences. The generative 
grammar is given in this section, followed by the linear bounded automata in section 3. It is significant 

that this procedure only accepts zero words, as required by the universal rewrite system, but the 

simulated process (unlike the natural one) can be terminated by a halting condition set by the user. 
 

6.1 The Universal Rewrite System (URS) as a Generative Grammar 
In conventional language theory, the alphabets that compose the definition of generative grammars are 

finite sets of symbols. A grammar G is a tuple, G = (VN, VT, P, S), where VN is a finite set of non-

terminal symbols, VT is a finite set of terminal symbols, P is a set of production rules and S is the start 

symbol. To treat the URS as a computational language, the URS needs to be modelled as a language 

generated by a very specific type of grammar. To compute the sets of words the grammar this language 

generates requires a machine with the minimum power capabilities of linear bounded automata (lba) at 

the least. 

To bring out the progressive repetition structures of the URS in a computational manner, the grammar 
of the URS needs to contain finite alphabets. The way to accomplish this is to let every symbol in the 

URS be labelled with one of two types of index numbers q1 or q2 that both vary as functions of the 

variable u, q1= g(u(n – 1)) = 2(u(n – 1)) + 1 = g ∘ f = g(f(n)) and q2 = s(u(n – 1)) = 2(u(n – 1)) + 2 = s ∘ 

f = s(f(n)). If we leave these indices q1 and q2 unevaluated, then we can reduce the infinite number of 

URS symbols to four basic types of symbols, which as mentioned earlier are really unevaluated 
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functions of u. It will be shown later in this section that the variable u is itself a function of the exponent 

n of the order 2� of the URS in the form u(n – 1) = f(n) =
�

�
(2(� − 1) − 3 − (−1)���). 

In an analogous fashion, if the generating rules of the URS are treated in the context of the definition 
of a grammar, that grammar would be formulated as a tuple G(URS) = (VN(URS), VT(URS), P(URS), 

S) where VN(URS) is a finite alphabet of nonterminal symbols, VT(URS) is a finite alphabet of terminal 

symbols, P(URS) is the set of production or replacement rules, and S is the start symbol, which is a 
symbol independent of the symbols in the finite sets of nonterminal and terminal alphabets. For the URS 

as defined by Nature, VT(URS) does not exist because the rewrite system doesn’t terminate, though we 

can include it to stop arbitrarily for technical convenience. 
Rules (2) and (3) split into positive and negative versions of each other. Both options lead to the 

same result but either branch must be rule replaced in a certain sequence consistently and independently 

of each other to give the same universal rewrite system. (2.1) conserve positive must be replaced by 

(2.2) negative substitution and vice versa. To apply the rules to generate the universal rewrite system. 

In (2.2), we are using a substitution rule (highlighted in bold). This anticipatory process is necessary to 

create the spaces for the symbols coming, in the same way as we create the space, by anticipation, for 

the expanded algebra in the basic URS. In this way it explains how the create process actually 

‘calculates’ the size of the new algebra which emerges. 

The language generated by the grammar URS, L(URS) is the set of words defined at the end of 
Section 2, assuming the symbols operate as though they are quaternions following the quaternion 

multiplication rules where X0 is the identity, X0
# minus identity, X2u+1 quaternion i, X2u+1

# quaternion –

i, X2u+2 quaternion j, X2u+2
# quaternion –j, X2u+1X2u+2  quaternion ij, X2u+1

# X
2u+2 

# quaternion –ij. Instead 
of continuing the product to infinity, as we propose that Nature does in principle, we can choose to adapt 

this product to a real machine by terminating the product at some particular power n of the order 2n in 

the URS, with the help of a function of n: u = f(n-1). u(n-1) numerically labels each conjugate pair 

symbol, using 2u+1 (= i in a quaternion representation) in power n and 2u + 2 (= j in a quaternion 

representation) in power n+1 with the same number u(n-1), excluding the conjugate unit pair R(0), R#(0) 

at power n = 1 where u(n-1) is undefined because there does not exist a set of anticommutative cycles 

at the power n = 1 (see table below). 

 

�(� − 1) =
1

4
(2(� − 1) − 3 − (−1)���) 

 

where u(n-1) ranges over {0, 1, 2, 3, …} and n ranges over {1, 2, 3, …}.  

Additionally, for every power n in each order 2n of the URS there exist (n — 1)/2 anticommutative 

sets that alternate between complete and incomplete sets. These correspond, respectively, to n odd 

values, with 2u+1 (quaternion i) combined with 2u + 2 (quaternion j) (complete), and n even values with     

2u + 2 (quaternion i) only (incomplete). The process is driven by the value of n chosen, which then 

produces a value of u(n-1), according to the formula.  
 

n = even value →   u(n-1) → X2u+1 (quaternion i) 
 

same label at next level n + 1          unique label 

 

n = odd value →.  u(n-1) → X2u+2   (quaternion j) 
 

same label at level n                       unique label 

 

In the rewrite system, at the most fundamental level, anticommutativity is the source of all 
discreteness and, ultimately, uniqueness. For every power n in each order 2n of the URS there exist (n – 
1)/2 anti-commutative sets that alternate between complete and incomplete sets. These correspond, 
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respectively, to n odd values, with 2u+1 (quaternion i) combined with 2u + 2 (quaternion j) (complete), 

and n even values with 2u + 2 (quaternion i) only (incomplete). The process is driven by the value of n 

chosen, which then produces a value of u(n – 1), according to the formula. Here is a table explaining the 
progression of the URS through increasing values of n: 

 

Power of URS n Order of URS  2n Quaternion i and  

Quaternion j 
same label  

 u(n-1) 

Quaternion i and  

Quaternion j 
same canonical 

labelling  

u(n-1) + 1  

[Zero to Infinity 

page 11]  

Quaternion i 
unique label 

R2u(n-1) +1 

Quaternion j 
unique label  

R2u(n-1) +2 

Number of 

anticommutative 

cycles at n 

1 2 No quaternions at 

level n = 1 
No quaternions at 

level n = 1 
No quaternions at 

level n = 1 
No quaternions at 

level n = 1 
0 

2 4 0 1 1  0.5 

3 8 0 1  2 1 

4 16 1 2 3  1.5 

5 32 1 2  4 2 

6 64 2 3 5  2.5 

7 128 2 3  6 3 

8 256 3 4 7  3.5 

9 512 3 4  8 4 

10 1024 4 5 9  4.5 

11 2048 4 5  10 5 

 

Index numbers on the symbols in the rewrite system represent different levels of the ‘repeated units’ 

become the numbers in the exponent specifying the number of concatenated copies of the ‘repeated 

units’ in regular expressions and the next alphabet (zero totality) consumes the previous alphabet (zero 

totality). 

6.2 The role of anticommutativity 
In the rewrite system, at the most fundamental level, anticommutativity is the source of all discreteness 

and, ultimately, uniqueness. For every power n in each order 2n of the URS there exist (n – 1)/2 anti-
commutative sets that alternate between complete and incomplete sets. These correspond, respectively, 

to n odd values, with 2u+1 (quaternion i) combined with 2u + 2 (quaternion j) (complete), and n even 

values with 2u + 2 (quaternion i) only (incomplete). The process is driven by the value of n chosen, 

which then produces a value of u(n – 1), according to the formula.  
This lends itself to a tensor product calculation in a computer algebra system with a tensor product 

capability (as in the Mathematica code used above). All variations of the code can be reduced in a 

program to a structure of this form, whether or not they are intrinsically algebraic. Without a computer 

algebraic system, the coding would be much more difficult. 

It is significant, however, that the tensor product formalism produced by the Mathematica program 

is not restricted to the anticommutative Clifford algebra. At the fundamental level [2-8], this occurs 

because it ensures the uniqueness of all states in the system, but, at a higher level, there may be cases in 
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which the uniqueness is already guaranteed, and the anticommutative aspect is not required. This occurs, 

for example, when we have a system with multiple n = 6 fermionic states produced by the Dirac 

equation, in which the wavefunction is a nilpotent or square root of zero, of the form (  ikE  ip + jm)  

[6]; each of these is already guaranteed as unique by the nilpotency (which is equivalent to Pauli 

exclusion), and so the production of new symbols by the rewrite structure as new nilpotent fermions are 

added to the system does not need symbols that are anticommutative. This, in effect, creates the Hilbert 

space in which the characteristics of the orthogonal components are created by the nilpotent 

wavefunctions and not those of the coefficients needed to extend the rewriting to higher levels. So, we 

find that systems made up of many quantum states are described by tensor products with 2n terms, and 
that, at this level, the entire quantum universe has a perfect description as a rewrite system defined by 

the structure revealed in the Mathematica program. Physically, this means that every state is connected 

to every other state, and that the entire quantum universe is in some way entangled. Analogues also 
occur with systems described in classical terms. 

 

7. The machines that recognize the URS 
The Turing Machine for the language LURS = {0�


: n ≥ 0} is the universal operating system for the URS 

that is already extant in the computer science literature.  

 
Transition Function δ for LURS = {0�


: n ≥ 0} 

State q  0 x  ⊔  

q1 (q2, ⊔, R) (qreject, x, R) (qreject, ⊔, R) 

q2 (q3, x, R) (q2, x, R) (qaccept, ⊔, R) 

q3 (q4, 0, R) (q3, x, R) (q5, ⊔, R) 

q4 (q3, x, R) (q4, x, R) (qreject, ⊔, R) 

q5 (q5, 0, L) (q5, x, L) (q2, ⊔, R) 

 

 
                                                                (Diagram from Sipser [33]) 

7.1 Recognizing languages 
To understand sentences in a particular language requires knowledge of the rules of sentence formation. 

Sentient intelligence possesses this ability and computational devices simulate this ability. In the 

Rowlands-Diaz Rewrite System there do not exist choices – the URS recognized by a Turing Machine 

over an infinite alphabet moves in only one direction. The repeating part of the pattern of the Rowlands-

Diaz Rewrite System is caused by anticommutativity which involves the symmetries of the number 3 or 

3-dimensionality. This is the reason for the existence of the repetition in the infinite sequence of square 

roots of –1. 
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The transition tables for the machines in this work were worked out using two related methods: the 

suffix function used to determine the values of the transition function borrowed from the finite automata 

algorithm for the string matching problem and the pseudocode used to run code to compute the transition 
function [35]. Both methods can be used to cross check the accuracy of the values computed in the 

transition tables. Using the suffix function method, all the zero totalities of the rewrite system are empty 

strings with unique patterns. As such these patterns are subject to sorting functions according to the 
positions of the characters that compose the empty strings. Therefore, these empty strings can be sorted 

according to the methods of sorting arrays. One such sorting function that is particularly relevant is the 

suffix function.  

 
7.2 Some notation and terminology  
To construct a transition function table for a machine recognizing the 0 words, we find that a particular 

string-matching algorithm is an exact fit to our requirements. Part of this process involves the suffix 

function, that is, we find the longest suffix that matches the prefix of the pattern. A string w is a prefix 

of a string x, denoted w ⊏ x, if x = wy for some string y  Σ*, where Σ* is the set of all finite-length 

strings over the alphabet Σ. A string w is a suffix of a string x, denoted w ⊐ x, if x = yw for some string 

y  Σ*.[35] 

Given a string x and a pattern P[1.. m] from the same alphabet Σ, the suffix function σ(x) maps the 

characters from Σ*, which is the set of all the finite length words formed from the given alphabet Σ, to 

the indexed positions {0, 1, …., m} of the given pattern P[1.. m] such that σ(x) is the length of the 

longest prefix of P[1… m] that is also a suffix of x: 

 

σ(x) = max{k: Pk ⊐ x} 

 
7.3 Computing the transition function 
The following algorithm [35], computes the transition function δ from a given pattern P[1..m]. 

 

COMPUTE-TRANSITION-FUNCTION(P, Σ) 

3.  m = P.length 
4. for q = 0 to m 

5.      for each character a ∈ Σ  

6.          k = min(m + 1, q + 2) 

7.          repeat 
8.                k = k – 1  

9.          until Pk ⊐ Pqa 

10.          δ(q, a) = k 

11. return δ  
 

We interpret this algorithm as follows  
 

� The values for q are [0, …, m] = m + 1. 

� The values for k are [0, …, q + 1] = q + 2.  

� The length of Pk is |Pk| = k and the length of Pqa is |Pqa| = q + 1.  

� The condition Pk ⊐ Pqa implies that |Pk| ≤ |Pqa| which implies k ≤ q + 1.  

� To start the algorithm, for each state q, choose k = min(m + 1, q + 2). Then repeatedly 

decrease k by 1 and assign k = k – 1 until the condition k ≤ q + 1 is true. 

Then assign δ(q, a) = k.  
 

State q 
Allowable values of k for each state q,  

k ≤ q + 1 
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0 0, 1 ≤ 1 

1 0, 1, 2 ≤ 2 

2 0, 1, 2, 3 ≤ 3 

3 0, 1, 2, 3, 4 ≤ 4 

… … 

m 0, 1, …, m - 2, m - 1, m, m + 1 ≤ m + 1 
 

The only difference between the URS defined using the finite alphabet versus the infinite alphabet 
is that the alphabet defined for the URS using the finite alphabet has only four types of characters. Since 

the URS is an infinitely sized language, the finite alphabet form reveals the fundamental 

anticommutative cyclical pattern that infinitely repeats as the URS develops. The URS defined using 
the infinite alphabet reveals the unending development of the URS using an infinite number of symbols. 

The URS defined using the infinite alphabet shows the infinite number of anticommutative cycles that 

compose the URS increases as the URS develops.  

 
7.4 Machines for the URS defined iteratively using the infinite alphabet 
The 0 for n = 6 is made of the following order 64 word: 

ϵ6 =  

abac1bc1ae1be1ac1e1bc1e1ac2bc2ac2c1bc2c1ac2e1bc2e1ac2c1e1bc2c1e1ae2be2ae2c1be2c1ae2e1be2e1ae2c1e1be2c1

e1ae2c2be2c2ae2c2c1be2c2c1ae2c2e1be2c2e1ae2c2c1e1be2c2c1e1ac3bc3ac3c1bc3c1ac3e1bc3e1ac3c1e1bc3c1e1ac3c2

bc3c2ac3c2c1bc3c2c1ac3c2e1bc3c2e1ac3c2c1e1bc3c2c1e1ac3e2bc3e2ac3e2c1bc3e2c1ac3e2e1bc3e2e1ac3e2c1e1bc3e2c

1e1ac3e2c2bc3e2c2ac3e2c2c1bc3e2c2c1ac3e2c2e1bc3e2c2e1ac3e2c2c1e1bc3e2c2c1e1 

 

We now apply the suffix function to give the complete instruction table for the transition function for 
the machine that will recognize this word. 

 

Pattern P = ϵ6
 

δ(0, a) = 1, since P0a = ϵa and σ(P0a) = σ(ϵa) = 1  

δ(0, b) = 0, since P0b = ϵb and σ(P0b) = σ(ϵb) = 0  

δ(0, c1) = 0, since P0c1 = ϵc1 and σ(P0c1) = σ(ϵc1) = 0  

δ(0, e1) = 0, since P0e1 = ϵe1 and σ(P0e1) = σ(ϵe1) = 0  

δ(0, c2) = 0, since P0c2 = ϵc2 and σ(P0c2) = σ(ϵc2) = 0  

δ(0, e2) = 0, since P0e2 = ϵe2 and σ(P0e2) = σ(ϵe2) = 0 

δ(0, c3) = 0, since P0c3 = ϵc3 and σ(P0c3) = σ(ϵc3) = 0 

δ(1, a) = 1, since P1a = aa and σ(P1a) = σ(aa) = 1  

δ(1, b) = 2, since P1b = ab and σ(P1b) = σ(ab) = 2  

δ(1, c1) = 0, since P1c1 = ac1 and σ(P1c1) = σ(ac1) = 0  

δ(1, e1) = 0, since P1e1 = ae1 and σ(P1e1) = σ(ae1) = 0  

δ(1, c2) = 0, since P1c2 = ac2 and σ(P1c2) = σ(ac2) = 0  

δ(1, e2) = 0, since P1e2 = ae2 and σ(P1e2) = σ(ae2) = 0 

δ(1, c3) = 0, since P1c3 = ac3 and σ(P1c3) = σ(ac3) = 0 

δ(2, a) = 3, since P2a = aba and σ(P2a) = σ(aba) = 3  

δ(2, b) = 0, since P2b = abb and σ(P2b) = σ(abb) = 0 

δ(2, c1) = 0, since P2c1 = abc1 and σ(P2c1) = σ(abc1) = 0  

δ(2, e1) = 0, since P2e1 = abe1 and σ(P2e1) = σ(abe1) = 0  

δ(2, c2) = 0, since P2c2 = abc2 and σ(P2c2) = σ(abc2) = 0  

δ(2, e2) = 0, since P2e2 = abe2 and σ(P2e2) = σ(abe2) = 0 
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δ(2, c3) = 0, since P2c3 = abc3 and σ(P2c3) = σ(abc3) = 0 

δ(3, a) = 1, since P3a = abaa and σ(P3a) = σ(abaa) = 1 

δ(3, b) = 2, since P3b = abab and σ(P3b) = σ(abab) = 2 

δ(3, c1) = 4, since P3c1 = abac1 and σ(P3c1) = σ(abac1) = 4  

δ(3, e1) = 0, since P3e1 = abae1 and σ(P3e1) = σ(abae1) = 0  

δ(3, c2) = 0, since P3c2 = abac2 and σ(P3c2) = σ(abac2) = 0  

δ(3, e2) = 0, since P3e2 = abae2 and σ(P3e2) = σ(abae2) = 0 

δ(3, c3) = 0, since P3c3 = abac3 and σ(P3c3) = σ(abac3) = 0 

δ(4, a) = 1, since P4a = abac1a and σ(P4a) = σ(abac1a) = 1  

δ(4, b) = 0, since P4b = abac1b and σ(P4b) = σ(abac1b) = 5 

δ(4, c1) = 0, since P4c1 = abac1c1 and σ(P4c1) = σ(abac1c1) = 0 

δ(4, e1) = 0, since P4e1 = abac1e1 and σ(P4e1) = σ(abac1e1) = 0  

δ(4, c2) = 0, since P4c2 = abac1c2 and σ(P4c2) = σ(abac1c2) = 0  

δ(4, e2) = 0, since P4e2 = abac1e2 and σ(P4e2) = σ(abac1e2) = 0 

δ(4, c3) = 0, since P4c3 = abac1c3 and σ(P4c3) = σ(abac1c3) = 0 

δ(5, a) = 1, since P5a = abac1ba and σ(P5a) = σ(abac1ba) = 1  

δ(5, b) = 0, since P5b = abac1bb and σ(P5b) = σ(abac1bb) = 0 

δ(5, c1) = 6, since P5c1 = abac1bc1 and σ(P5c1) = σ(abac1bc1) = 6 

δ(5, e1) = 0, since P5e1 = abac1be1 and σ(P5e1) = σ(abac1be1) = 0  

δ(5, c2) = 0, since P5c2 = abac1bc2 and σ(P5c2) = σ(abac1bc2) = 0  

δ(5, e2) = 0, since P5e2 = abac1be2 and σ(P5e2) = σ(abac1be2) = 0 

δ(5, c3) = 0, since P5c3 = abac1bc3 and σ(P5c3) = σ(abac1bc3) = 0 

δ(6, a) = 7, since P6a = abac1bc1a and σ(P6a) = σ(abac1bc1a) = 7  

δ(6, b) = 0, since P6b = abac1bc1b and σ(P6b) = σ(abac1bc1b) = 0 

δ(6, c1) = 0, since P6c1 = abac1bc1c1  and σ(P6c1) = σ(abac1bc1c1) = 0 

δ(6, e1) = 0, since P6e1 = abac1bc1e1 and σ(P6e1) = σ(abac1bc1e1) = 0 

δ(6, c2) = 0, since P6c2 = abac1bc1c2 and σ(P6c2) = σ(abac1bc1c2) = 0  

δ(6, e2) = 0, since P6e2 = abac1bc1e2 and σ(P6e2) = σ(abac1bc1e2) = 0 

δ(6, c3) = 0, since P6c3 = abac1bc1c3 and σ(P6c3) = σ(abac1bc1c3) = 0 

δ(7, a) = 1, since P7a = abac1bc1aa and σ(P7a) = σ(abac1bc1aa) = 1  

δ(7, b) = 2, since P7b = abac1bc1ab and σ(P7b) = σ(abac1bc1ab) = 2 

δ(7, c1) = 0, since P7c1 = abac1bc1ac1 and σ(P7c1) = σ(abac1bc1ac1) = 0 

δ(7, e1) = 8, since P7e1 = abac1bc1ae1 and σ(P7e1) = σ(abac1bc1ae1) = 8 

δ(7, c2) = 0, since P7c2 = abac1bc1ac2 and σ(P7c2) = σ(abac1bc1ac2) = 0  

δ(7, e2) = 0, since P7e2 = abac1bc1ae2 and σ(P7e2) = σ(abac1bc1ae2) = 0 

δ(7, c3) = 0, since P7c3 = abac1bc1ac3 and σ(P7c3) = σ(abac1bc1ac3) = 0 

δ(8, a) = 1, since P8a = abac1bc1ae1a and σ(P8a) = σ(abac1bc1ae1a) = 1  

δ(8, b) = 9, since P8b = abac1bc1ae1b and σ(P8b) = σ(abac1bc1ae1b) = 9 

δ(8, c1) = 0, since P8c1 = abac1bc1ae1c1 and σ(P8c1) = σ(abac1bc1ae1c1) = 0 

δ(8, e1) = 0, since P8e1 = abac1bc1ae1e1 and σ(P8e1) = σ(abac1bc1ae1e1) = 0 

δ(8, c2) = 0, since P8c2 = abac1bc1ae1c2 and σ(P8c2) = σ(abac1bc1ae1c2) = 0  

δ(8, e2) = 0, since P8e2 = abac1bc1ae1e2 and σ(P8e2) = σ(abac1bc1ae1e2) = 0 

δ(8, c3) = 0, since P8c3 = abac1bc1ae1c3 and σ(P8c3) = σ(abac1bc1ae1c3) = 0 

δ(9, a) = 1, since P9a = abac1bc1ae1ba and σ(P9a) = σ(abac1bc1ae1ba) = 1  

δ(9, b) = 0, since P9b = abac1bc1ae1bb and σ(P9b) = σ(abac1bc1ae1bb) = 0 

δ(9, c1) = 0, since P9c1 = abac1bc1ae1bc1 and σ(P9c1) = σ(abac1bc1ae1bc1) = 0 

δ(9, e1) = 10, since P9e1 = abac1bc1ae1be1 and σ(P9e1) = σ(abac1bc1ae1be1) = 10 
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δ(9, c2) = 0, since P9c2 = abac1bc1ae1bc2 and σ(P9c2) = σ(abac1bc1ae1bc2) = 0  

δ(9, e2) = 0, since P9e2 = abac1bc1ae1be2 and σ(P9e2) = σ(abac1bc1ae1be2) = 0 

δ(9, c3) = 0, since P9c3 = abac1bc1ae1bc3 and σ(P9c3) = σ(abac1bc1ae1bc3) = 0 

δ(10, a) = 11, since P10a = abac1bc1ae1be1a and σ(P10a) = σ(abac1bc1ae1be1a) = 11  

δ(10, b) = 0, since P10b = abac1bc1ae1be1b and σ(P10b) = σ(abac1bc1ae1be1b) = 0 

δ(10, c1) = 0, since P10c1 = abac1bc1ae1be1c1 and σ(P10c1) = σ(abac1bc1ae1be1c1) = 0 

δ(10, e1) = 0, since P10e1 = abac1bc1ae1be1e1 and σ(P10e1) = σ(abac1bc1ae1be1e1) = 0 

δ(10, c2) = 0, since P10c2 = abac1bc1ae1be1c2 and σ(P10c2) = σ(abac1bc1ae1be1c2) = 0  

δ(10, e2) = 0, since P10e2 = abac1bc1ae1be1e2 and σ(P10e2) = σ(abac1bc1ae1be1e2) = 0 

δ(10, c3) = 0, since P10c3 = abac1bc1ae1be1c3 and σ(P10c3) = σ(abac1bc1ae1be1c3) = 0 

δ(11, a) = 1, since P11a = abac1bc1ae1be1aa and σ(P11a) = σ(abac1bc1ae1be1aa) = 1  

δ(11, b) = 2, since P11b = abac1bc1ae1be1ab and σ(P11b) = σ(abac1bc1ae1be1ab) = 2 

δ(11, c1) = 12, since P11c1 = abac1bc1ae1be1ac1 and σ(P11c1) = σ(abac1bc1ae1be1ac1) = 12 

δ(11, e1) = 0, since P11e1 = abac1bc1ae1be1ae1 and σ(P11e1) = σ(abac1bc1ae1be1ae1) = 0 

δ(11, c2) = 0, since P11c2 = abac1bc1ae1be1ac2 and σ(P11c2) = σ(abac1bc1ae1be1ac2) = 0  

δ(11, e2) = 0, since P11e2 = abac1bc1ae1be1ae2 and σ(P11e2) = σ(abac1bc1ae1be1ae2) = 0 

δ(11, c3) = 0, since P11c3 = abac1bc1ae1be1ac3 and σ(P11c3) = σ(abac1bc1ae1be1ac3) = 0 

δ(12, a) = 1, since P12a = abac1bc1ae1be1ac1a and σ(P12a) = σ(abac1bc1ae1be1ac1a) = 1  

δ(12, b) = 0, since P12b = abac1bc1ae1be1ac1b and σ(P12b) = σ(abac1bc1ae1be1ac1b) = 0 

δ(12, c1) = 0, since P12c1 = abac1bc1ae1be1ac1c1 and σ(P12c1) = σ(abac1bc1ae1be1ac1c1) = 0 

δ(12, e1) = 13, since P12e1 = abac1bc1ae1be1ac1e1 and σ(P12e1) = σ(abac1bc1ae1be1ac1e1) = 13 

δ(12, c2) = 0, since P12c2 = abac1bc1ae1be1ac1c2 and σ(P12c2) = σ(abac1bc1ae1be1ac1c2) = 0  

δ(12, e2) = 0, since P12e2 = abac1bc1ae1be1ac1e2 and σ(P12e2) = σ(abac1bc1ae1be1ac1e2) = 0 

δ(12, c3) = 0, since P12c3 = abac1bc1ae1be1ac1c3 and σ(P12c3) = σ(abac1bc1ae1be1ac1c3) = 0 

δ(13, a) = 1, since P13a = abac1bc1ae1be1ac1e1a and σ(P13a) = σ(abac1bc1ae1be1ac1e1a) = 1  

δ(13, b) = 14, since P13b = abac1bc1ae1be1ac1e1b and σ(P13b) = σ(abac1bc1ae1be1ac1e1b) = 14 

δ(13, c1) = 0, since P13c1 = abac1bc1ae1be1ac1e1c1 and σ(P13c1) = σ(abac1bc1ae1be1ac1e1c1) = 0 

δ(13, e1) = 0, since P13e1 = abac1bc1ae1be1ac1e1e1 and σ(P13e1) = σ(abac1bc1ae1be1ac1e1e1) = 0 

δ(13, c2) = 0, since P13c2 = abac1bc1ae1be1ac1e1c2 and σ(P13c2) = σ(abac1bc1ae1be1ac1e1c2) = 0 

δ(13, e2) = 0, since P13e2 = abac1bc1ae1be1ac1e1e2 and σ(P13e2) = σ(abac1bc1ae1be1ac1e1e2) = 0 

δ(13, c3) = 0, since P13c3 = abac1bc1ae1be1ac1e1c3 and σ(P13c3) = σ(abac1bc1ae1be1ac1e1c3) = 0 

δ(14, a) = 1, since P14a = abac1bc1ae1be1ac1e1ba and σ(P14a) = σ(abac1bc1ae1be1ac1e1ba) = 1  

δ(14, b) = 0, since P14b = abac1bc1ae1be1ac1e1bb and σ(P14b) = σ(abac1bc1ae1be1ac1e1bb) = 0 

δ(14, c1) = 15, since P14c1 = abac1bc1ae1be1ac1e1bc1 and σ(P14c1) = σ(abac1bc1ae1be1ac1e1bc1) = 15 

δ(14, e1) = 0, since P14e1 = abac1bc1ae1be1ac1e1be1 and σ(P14e1) = σ(abac1bc1ae1be1ac1e1be1) = 0 

δ(14, c2) = 0, since P14c2 = abac1bc1ae1be1ac1e1bc2 and σ(P14c2) = σ(abac1bc1ae1be1ac1e1bc2) = 0  

δ(14, e2) = 0, since P14e2 = abac1bc1ae1be1ac1e1be2 and σ(P14e2) = σ(abac1bc1ae1be1ac1e1be2) = 0 

δ(14, c3) = 0, since P14c3 = abac1bc1ae1be1ac1e1bc3 and σ(P14c3) = σ(abac1bc1ae1be1ac1e1bc3) = 0 

δ(15, a) = 1, since P15a = abac1bc1ae1be1ac1e1bc1a and σ(P15a) = σ(abac1bc1ae1be1ac1e1bc1a) = 1  

δ(15, b) = 0, since P15b = abac1bc1ae1be1ac1e1bc1b and σ(P15b) = σ(abac1bc1ae1be1ac1e1bc1b) = 0 

δ(15, c1) = 0, since P15c1 = abac1bc1ae1be1ac1e1bc1c1 and σ(P15c1) = σ(abac1bc1ae1be1ac1e1bc1c1) = 0 

δ(15, e1) = 16, since P15e1 = abac1bc1ae1be1ac1e1bc1e1 and σ(P15e1) = σ(abac1bc1ae1be1ac1e1bc1e1) = 16 

δ(15, c2) = 0, since P15c2 = abac1bc1ae1be1ac1e1bc1c2 and σ(P15c2) = σ(abac1bc1ae1be1ac1e1bc1c2) = 0 

δ(15, e2) = 0, since P15e2 = abac1bc1ae1be1ac1e1bc1e2 and σ(P15e2) = σ(abac1bc1ae1be1ac1e1bc1e2) = 0 

δ(15, c3) = 0, since P15c3 = abac1bc1ae1be1ac1e1bc1c3 and σ(P15c3) = σ(abac1bc1ae1be1ac1e1bc1c3) = 0 

δ(16, a) = 17, since P16a = abac1bc1ae1be1ac1e1bc1e1a and σ(P16a) = σ(abac1bc1ae1be1ac1e1bc1e1a) = 17  

δ(16, b) = 0, since P16b = abac1bc1ae1be1ac1e1bc1e1b and σ(P16b) = σ(abac1bc1ae1be1ac1e1bc1e1b) = 0 
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δ(16, c1) = 0, since P16c1 = abac1bc1ae1be1ac1e1bc1e1c1 and σ(P16c1) = σ(abac1bc1ae1be1ac1e1bc1e1c1) = 0 

δ(16, e1) = 0, since P16e1 = abac1bc1ae1be1ac1e1bc1e1e1 and σ(P16e1) = σ(abac1bc1ae1be1ac1e1bc1e1e1) = 0 

δ(16, c2) = 0, since P16c2 = abac1bc1ae1be1ac1e1bc1e1c2 and σ(P16c2) = σ(abac1bc1ae1be1ac1e1bc1e1c2) = 0 

δ(16, e2) = 0, since P16e2 = abac1bc1ae1be1ac1e1bc1e1e2 and σ(P16e2) = σ(abac1bc1ae1be1ac1e1bc1e1e2) = 0 

δ(16, c3) = 0, since P16c3 = abac1bc1ae1be1ac1e1bc1e1c3 and σ(P16c3) = σ(abac1bc1ae1be1ac1e1bc1e1c3) = 0 

δ(17, a) = 1, since P17a = abac1bc1ae1be1ac1e1bc1e1aa and σ(P17a) = σ(abac1bc1ae1be1ac1e1bc1e1aa) = 1  

δ(17, b) = 2, since P17b = abac1bc1ae1be1ac1e1bc1e1ab and σ(P17b) = σ(abac1bc1ae1be1ac1e1bc1e1ab) = 2 

δ(17, c1) = 0, since P17c1 = abac1bc1ae1be1ac1e1bc1e1ac1 and σ(P17c1) = σ(abac1bc1ae1be1ac1e1bc1e1ac1) = 

0 

δ(17, e1) = 0, since P17e1 = abac1bc1ae1be1ac1e1bc1e1ae1 and σ(P17e1) = σ(abac1bc1ae1be1ac1e1bc1e1ae1) = 

0 

δ(17, c2) = 18, since P17c2 = abac1bc1ae1be1ac1e1bc1e1ac2 and σ(P17c2) = σ(abac1bc1ae1be1ac1e1bc1e1ac2) 

= 18 

δ(17, e2) = 0, since P17e2 = abac1bc1ae1be1ac1e1bc1e1ae2 and σ(P17e2) = σ(abac1bc1ae1be1ac1e1bc1e1ae2) = 

0 

δ(17, c3) = 0, since P17c3 = abac1bc1ae1be1ac1e1bc1e1ac3 and σ(P17c3) = σ(abac1bc1ae1be1ac1e1bc1e1ac3) = 

0 

δ(18, a) = 1, since P18a = abac1bc1ae1be1ac1e1bc1e1ac2a and σ(P18a) = σ(abac1bc1ae1be1ac1e1bc1e1ac2a) = 

1  

δ(18, b) = 19, since P18b = abac1bc1ae1be1ac1e1bc1e1ac2b and σ(P18b) = σ(abac1bc1ae1be1ac1e1bc1e1ac2b) 

= 19 

δ(18, c1) = 0, since P18c1 = abac1bc1ae1be1ac1e1bc1e1ac2c1 and σ(P18c1) = 

σ(abac1bc1ae1be1ac1e1bc1e1ac2c1) = 0 

δ(18, e1) = 0, since P18e1 = abac1bc1ae1be1ac1e1bc1e1ac2e1 and σ(P18e1) = 

σ(abac1bc1ae1be1ac1e1bc1e1ac2e1) = 0 

δ(18, c2) = 0, since P18c2 = abac1bc1ae1be1ac1e1bc1e1ac2c2 and σ(P18c2) = 

σ(abac1bc1ae1be1ac1e1bc1e1ac2c2) = 0 

δ(18, e2) = 0, since P18e2 = abac1bc1ae1be1ac1e1bc1e1ac2e2 and σ(P18e2) = 

σ(abac1bc1ae1be1ac1e1bc1e1ac2e2) = 0 

δ(18, c3) = 0, since P18c3 = abac1bc1ae1be1ac1e1bc1e1ac2c3 and σ(P18c3) = 

σ(abac1bc1ae1be1ac1e1bc1e1ac2c3) = 0 

δ(19, a) = 1, since P19a = abac1bc1ae1be1ac1e1bc1e1ac2ba and σ(P19a) = 

σ(abac1bc1ae1be1ac1e1bc1e1ac2ba) = 1  

δ(19, b) = 0, since P19b = abac1bc1ae1be1ac1e1bc1e1ac2bb and σ(P19b) = 

σ(abac1bc1ae1be1ac1e1bc1e1ac2bb) = 0 

δ(19, c1) = 0, since P19c1 = abac1bc1ae1be1ac1e1bc1e1ac2bc1 and σ(P19c1) = 

σ(abac1bc1ae1be1ac1e1bc1e1ac2bc1) = 0 

δ(19, e1) = 0, since P19e1 = abac1bc1ae1be1ac1e1bc1e1ac2be1 and σ(P19e1) = 

σ(abac1bc1ae1be1ac1e1bc1e1ac2be1) = 0 

δ(19, c2) = 20, since P19c2 = abac1bc1ae1be1ac1e1bc1e1ac2bc2 and σ(P19c2) = 

σ(abac1bc1ae1be1ac1e1bc1e1ac2bc2) = 20 

δ(19, e2) = 0, since P19e2 = abac1bc1ae1be1ac1e1bc1e1ac2be2 and σ(P19e2) = 

σ(abac1bc1ae1be1ac1e1bc1e1ac2be2) = 0 

δ(19, c3) = 0, since P19c3 = abac1bc1ae1be1ac1e1bc1e1ac2bc3 and σ(P19c3) = 

σ(abac1bc1ae1be1ac1e1bc1e1ac2bc3) = 0 

δ(20, a) = 21, since P20a = abac1bc1ae1be1ac1e1bc1e1ac2bc2a and σ(P20a) = 

σ(abac1bc1ae1be1ac1e1bc1e1ac2bc2a) = 21  

δ(20, b) = 0, since P20b = abac1bc1ae1be1ac1e1bc1e1ac2bc2b and σ(P20b) = 

σ(abac1bc1ae1be1ac1e1bc1e1ac2bc2b) = 0 
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δ(20, c1) = 0, since P20c1 = abac1bc1ae1be1ac1e1bc1e1ac2bc2c1 and σ(P20c1) = 

σ(abac1bc1ae1be1ac1e1bc1e1ac2bc2c1) = 0 

δ(20, e1) = 0, since P20e1 = abac1bc1ae1be1ac1e1bc1e1ac2bc2e1 and σ(P20e1) = 

σ(abac1bc1ae1be1ac1e1bc1e1ac2bc2e1) = 0 

δ(20, c2) = 0, since P20c2 = abac1bc1ae1be1ac1e1bc1e1ac2bc2c2 and σ(P20c2) = 

σ(abac1bc1ae1be1ac1e1bc1e1ac2bc2c2) = 0 

δ(20, e2) = 0, since P20e2 = abac1bc1ae1be1ac1e1bc1e1ac2bc2e2 and σ(P20e2) = 

σ(abac1bc1ae1be1ac1e1bc1e1ac2bc2e2) = 0 

δ(20, c3) = 0, since P20c3 = abac1bc1ae1be1ac1e1bc1e1ac2bc2c3 and σ(P20c3) = 

σ(abac1bc1ae1be1ac1e1bc1e1ac2bc2c3) = 0 

δ(21, a) = 1, since P21a = abac1bc1ae1be1ac1e1bc1e1ac2bc2aa and σ(P21a) = 

σ(abac1bc1ae1be1ac1e1bc1e1ac2bc2aa) = 1  

δ(21, b) = 2, since P21b = abac1bc1ae1be1ac1e1bc1e1ac2bc2ab and σ(P21b) = 

σ(abac1bc1ae1be1ac1e1bc1e1ac2bc2ab) = 2 

δ(21, c1) = 0, since P21c1 = abac1bc1ae1be1ac1e1bc1e1ac2bc2ac1 and σ(P21c1) = 

σ(abac1bc1ae1be1ac1e1bc1e1ac2bc2ac1) = 0 

δ(21, e1) = 0, since P21e1 = abac1bc1ae1be1ac1e1bc1e1ac2bc2ae1 and σ(P21e1) = 

σ(abac1bc1ae1be1ac1e1bc1e1ac2bc2ae1) = 0 

δ(21, c2) = 22, since P21c2 = abac1bc1ae1be1ac1e1bc1e1ac2bc2ac2 and σ(P21c2) = 

σ(abac1bc1ae1be1ac1e1bc1e1ac2bc2ac2) = 22 

δ(21, e2) = 0, since P21e2 = abac1bc1ae1be1ac1e1bc1e1ac2bc2ae2 and σ(P21e2) = 

σ(abac1bc1ae1be1ac1e1bc1e1ac2bc2ae2) = 0 

δ(21, c3) = 0, since P21c3 = abac1bc1ae1be1ac1e1bc1e1ac2bc2ac3 and σ(P21c3) = 

σ(abac1bc1ae1be1ac1e1bc1e1ac2bc2ac3) = 0 

δ(22, a) = 1, since P22a = abac1bc1ae1be1ac1e1bc1e1ac2bc2ac2a and σ(P22a) = 

σ(abac1bc1ae1be1ac1e1bc1e1ac2bc2ac2a) = 1  

δ(22, b) = 0, since P22b = abac1bc1ae1be1ac1e1bc1e1ac2bc2ac2b and σ(P22b) = 

σ(abac1bc1ae1be1ac1e1bc1e1ac2bc2ac2b) = 0 

δ(22, c1) = 23, since P22c1 = abac1bc1ae1be1ac1e1bc1e1ac2bc2ac2c1 and σ(P22c1) = 

σ(abac1bc1ae1be1ac1e1bc1e1ac2bc2ac2c1) = 23 

δ(22, e1) = 0, since P22e1 = abac1bc1ae1be1ac1e1bc1e1ac2bc2ac2e1 and σ(P22e1) = 

σ(abac1bc1ae1be1ac1e1bc1e1ac2bc2ac2e1) = 0 

δ(22, c2) = 0, since P22c2 = abac1bc1ae1be1ac1e1bc1e1ac2bc2ac2c2 and σ(P22c2) = 

σ(abac1bc1ae1be1ac1e1bc1e1ac2bc2ac2c2) = 0 

δ(22, e2) = 0, since P22e2 = abac1bc1ae1be1ac1e1bc1e1ac2bc2ac2e2 and σ(P22e2) = 

σ(abac1bc1ae1be1ac1e1bc1e1ac2bc2ac2e2) = 0 

δ(22, c3) = 0, since P22c3 = abac1bc1ae1be1ac1e1bc1e1ac2bc2ac2c3 and σ(P22c3) = 

σ(abac1bc1ae1be1ac1e1bc1e1ac2bc2ac2c3) = 0 

δ(23, a) = 1, since P23a = abac1bc1ae1be1ac1e1bc1e1ac2bc2ac2c1a and σ(P23a) = 

σ(abac1bc1ae1be1ac1e1bc1e1ac2bc2ac2c1a) = 1  

δ(23, b) = 24, since P23b = abac1bc1ae1be1ac1e1bc1e1ac2bc2ac2c1b and σ(P23b) = 

σ(abac1bc1ae1be1ac1e1bc1e1ac2bc2ac2c1b) = 24 

δ(23, c1) = 0, since P23c1 = abac1bc1ae1be1ac1e1bc1e1ac2bc2ac2c1c1 and σ(P23c1) = 

σ(abac1bc1ae1be1ac1e1bc1e1ac2bc2ac2c1c1) = 0 

δ(23, e1) = 0, since P23e1 = abac1bc1ae1be1ac1e1bc1e1ac2bc2ac2c1e1 and σ(P23e1) = 

σ(abac1bc1ae1be1ac1e1bc1e1ac2bc2ac2c1e1) = 0 
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δ(23, c2) = 0, since P23c2 = abac1bc1ae1be1ac1e1bc1e1ac2bc2ac2c1c2 and σ(P23c2) = 

σ(abac1bc1ae1be1ac1e1bc1e1ac2bc2ac2c1c2) = 0 

δ(23, e2) = 0, since P23e2 = abac1bc1ae1be1ac1e1bc1e1ac2bc2ac2c1e2 and σ(P23e2) = 

σ(abac1bc1ae1be1ac1e1bc1e1ac2bc2ac2c1e2) = 0 

δ(23, c3) = 0, since P23c3 = abac1bc1ae1be1ac1e1bc1e1ac2bc2ac2c1c3 and σ(P23c3) = 

σ(abac1bc1ae1be1ac1e1bc1e1ac2bc2ac2c1c3) = 0 

δ(24, a) = 1, since P24a = abac1bc1ae1be1ac1e1bc1e1ac2bc2ac2c1ba and σ(P24a) = 

σ(abac1bc1ae1be1ac1e1bc1e1ac2bc2ac2c1ba) = 1  

δ(24, b) = 0, since P24b = abac1bc1ae1be1ac1e1bc1e1ac2bc2ac2c1bb and σ(P24b) = 

σ(abac1bc1ae1be1ac1e1bc1e1ac2bc2ac2c1bb) = 0 

δ(24, c1) = 0, since P24c1 = abac1bc1ae1be1ac1e1bc1e1ac2bc2ac2c1bc1 and σ(P24c1) = 

σ(abac1bc1ae1be1ac1e1bc1e1ac2bc2ac2c1bc1) = 0 

δ(24, e1) = 0, since P24e1 = abac1bc1ae1be1ac1e1bc1e1ac2bc2ac2c1be1 and σ(P24e1) = 

σ(abac1bc1ae1be1ac1e1bc1e1ac2bc2ac2c1be1) = 0 

δ(24, c2) = 25, since P24c2 = abac1bc1ae1be1ac1e1bc1e1ac2bc2ac2c1bc2 and σ(P24c2) = 

σ(abac1bc1ae1be1ac1e1bc1e1ac2bc2ac2c1bc2) = 25 

δ(24, e2) = 0, since P24e2 = abac1bc1ae1be1ac1e1bc1e1ac2bc2ac2c1be2 and σ(P24e2) = 

σ(abac1bc1ae1be1ac1e1bc1e1ac2bc2ac2c1be2) = 0 

δ(24, c3) = 0, since P24c3 = abac1bc1ae1be1ac1e1bc1e1ac2bc2ac2c1bc3 and σ(P24c3) = 

σ(abac1bc1ae1be1ac1e1bc1e1ac2bc2ac2c1bc3) = 0 

δ(25, a) = 1, since P25a = abac1bc1ae1be1ac1e1bc1e1ac2bc2ac2c1bc2a and σ(P25a) = 

σ(abac1bc1ae1be1ac1e1bc1e1ac2bc2ac2c1bc2a) = 1  

δ(25, b) = 0, since P25b = abac1bc1ae1be1ac1e1bc1e1ac2bc2ac2c1bc2b and σ(P25b) = 

σ(abac1bc1ae1be1ac1e1bc1e1ac2bc2ac2c1bc2b) = 0 

δ(25, c1) = 25, since P25c1 = abac1bc1ae1be1ac1e1bc1e1ac2bc2ac2c1bc2c1 and σ(P25c1) = 

σ(abac1bc1ae1be1ac1e1bc1e1ac2bc2ac2c1bc2c1) = 25 

δ(25, e1) = 0, since P25e1 = abac1bc1ae1be1ac1e1bc1e1ac2bc2ac2c1bc2e1 and σ(P25e1) = 

σ(abac1bc1ae1be1ac1e1bc1e1ac2bc2ac2c1bc2e1) = 0 

δ(25, c2) = 0, since P25c2 = abac1bc1ae1be1ac1e1bc1e1ac2bc2ac2c1bc2c2 and σ(P25c2) = 

σ(abac1bc1ae1be1ac1e1bc1e1ac2bc2ac2c1bc2c2) = 0 

δ(25, e2) = 0, since P25e2 = abac1bc1ae1be1ac1e1bc1e1ac2bc2ac2c1bc2e2 and σ(P25e2) = 

σ(abac1bc1ae1be1ac1e1bc1e1ac2bc2ac2c1bc2e2) = 0 

δ(25, c3) = 0, since P25c3 = abac1bc1ae1be1ac1e1bc1e1ac2bc2ac2c1bc2c3 and σ(P25c3) = 

σ(abac1bc1ae1be1ac1e1bc1e1ac2bc2ac2c1bc2c3) = 0 

δ(26, a) = 27, since P26a = abac1bc1ae1be1ac1e1bc1e1ac2bc2ac2c1bc2c1a and σ(P26a) = 

σ(abac1bc1ae1be1ac1e1bc1e1ac2bc2ac2c1bc2c1a) = 27  

δ(26, b) = 0, since P26b = abac1bc1ae1be1ac1e1bc1e1ac2bc2ac2c1bc2c1b and σ(P26b) = 

σ(abac1bc1ae1be1ac1e1bc1e1ac2bc2ac2c1bc2c1b) = 0 

δ(26, c1) = 0, since P26c1 = abac1bc1ae1be1ac1e1bc1e1ac2bc2ac2c1bc2c1c1 and σ(P26c1) = 

σ(abac1bc1ae1be1ac1e1bc1e1ac2bc2ac2c1bc2c1c1) = 0 

δ(26, e1) = 0, since P26e1 = abac1bc1ae1be1ac1e1bc1e1ac2bc2ac2c1bc2c1e1 and σ(P26e1) = 

σ(abac1bc1ae1be1ac1e1bc1e1ac2bc2ac2c1bc2c1e1) = 0 

δ(26, c2) = 0, since P26c2 = abac1bc1ae1be1ac1e1bc1e1ac2bc2ac2c1bc2c1c2 and σ(P26c2) = 

σ(abac1bc1ae1be1ac1e1bc1e1ac2bc2ac2c1bc2c1c2) = 0 

δ(26, e2) = 0, since P26e2 = abac1bc1ae1be1ac1e1bc1e1ac2bc2ac2c1bc2c1e2 and σ(P26e2) = 

σ(abac1bc1ae1be1ac1e1bc1e1ac2bc2ac2c1bc2c1e2) = 0 

δ(26, c3) = 0, since P26c3 = abac1bc1ae1be1ac1e1bc1e1ac2bc2ac2c1bc2c1c3 and σ(P26c3) = 

σ(abac1bc1ae1be1ac1e1bc1e1ac2bc2ac2c1bc2c1c3) = 0 
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δ(27, a) = 1, since P27a = abac1bc1ae1be1ac1e1bc1e1ac2bc2ac2c1bc2c1aa and σ(P27a) = 

σ(abac1bc1ae1be1ac1e1bc1e1ac2bc2ac2c1bc2c1aa) = 1  

δ(27, b) = 2, since P27b = abac1bc1ae1be1ac1e1bc1e1ac2bc2ac2c1bc2c1ab and σ(P27b) = 

σ(abac1bc1ae1be1ac1e1bc1e1ac2bc2ac2c1bc2c1ab) = 2 

δ(27, c1) = 0, since P27c1 = abac1bc1ae1be1ac1e1bc1e1ac2bc2ac2c1bc2c1ac1 and σ(P27c1) = 

σ(abac1bc1ae1be1ac1e1bc1e1ac2bc2ac2c1bc2c1ac1) = 0 

δ(27, e1) = 0, since P27e1 = abac1bc1ae1be1ac1e1bc1e1ac2bc2ac2c1bc2c1ae1 and σ(P27e1) = 

σ(abac1bc1ae1be1ac1e1bc1e1ac2bc2ac2c1bc2c1ae1) = 0 

δ(27, c2) = 28, since P27c2 = abac1bc1ae1be1ac1e1bc1e1ac2bc2ac2c1bc2c1ac2 and σ(P27c2) = 

σ(abac1bc1ae1be1ac1e1bc1e1ac2bc2ac2c1bc2c1ac2) = 28 

δ(27, e2) = 0, since P27e2 = abac1bc1ae1be1ac1e1bc1e1ac2bc2ac2c1bc2c1ae2 and σ(P27e2) = 

σ(abac1bc1ae1be1ac1e1bc1e1ac2bc2ac2c1bc2c1ae2) = 0 

δ(27, c3) = 0, since P27c3 = abac1bc1ae1be1ac1e1bc1e1ac2bc2ac2c1bc2c1ac3 and σ(P27c3) = 

σ(abac1bc1ae1be1ac1e1bc1e1ac2bc2ac2c1bc2c1ac3) = 0 

 

and so on. The full instructions are in the table below: 

 

Transition Function δ(q, a) for ϵ6 

State q Character a Pattern 

P a b c1 e1 c2 e2 c3 

→ 0 1, a 0 0 0 0 0 0 a 

1 1 2, b 0 0 0 0 0 b 

⊚2 3, a 0 0 0 0 0 0 a 

3 1 2 4, c1 0 0 0 0 c1 

4 1 5, b 0 0 0 0 0 b 

5  1 0 6, c1 0 0 0 0 c1 

⊚6 7, a 0 0 0 0 0 0 a 

7 1 2 0 8, e1 0 0 0 e1 

8 1 9, b 0 0 0 0 0 b 

9 1 0 0 10, e1 0 0 0 e1 

10 11, a 0 0 0 0 0 0 a 

11 1 2 12, c1 0 0 0 0 c1 

12 1 0 0 13, e1 0 0 0 e1 

13 1 14, b 0 0 0 0 0 b 

14 1 0 15, c1 0 0 0 0 c1 

15 1 0 0 16, e1 0 0 0 e1 

⊚16 17, a 0 0 0 0 0 0 a 

17 1 2 0 0 18, c2 0 0 c2 

18 1 19, b 0 0 0 0 0 b 

19 1 0 0 0 20, c2 0 0 c2 

20 21, a 0 0 0 0 0 0 a 

21 1 2 0 0 22, c2 0 0 c2 

22 1 0 23, c1 0 0 0 0 c1 

23 1 24, b  0 0 0 0 0 b 

24 1 0 0 0 25, c2 0 0 c2 
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25 1 0 25, c1 0 0 0 0 c1 

26 27, a 0 0 0 0 0 0 a 

27 1 2 0 0 28, c2 0 0 c2 

28 1 0 0 29, e1 0 0 0 e1 

29 1 30, b  0 0 0 0 0 b 

30 1 0 0 0 31, c2 0 0 c2 

31 1 0 0 32, e1 0 0 0 e1 

32 33, a 0 0 0 0 0 0 a 

33 1 2 0 0 34, c2 0 0 c2 

34 1 0 35, c1 0 0 0 0 c1 

35 1 0 0 36, e1 0 0 0 e1 

36 1 37, b  0 0 0 0 0 b 

37 1 0 0 0 38, c2 0 0 c2 

38 1 0 39, c1 0 0 0 0 c1 

39 1 0 0 40, e1 0 0 0 e1 

⊚40 41, a 0 0 0 0 0 0 a 

41 1 2 0 0 0 42, e2 0 e2 

42 1 43, b  0 0 0 0 0 b 

43 1 0 0 0 0 44, e2 0 e2 

44 45, a 0 0 0 0 0 0 a 

45 1 2 0 0 0 46, e2 0 e2 

46 1 0 47, c1 0 0 0 0 c1 

47 1 48, b 0 0 0 0 0 b 

48 1 0 0 0 0 49, e2 0 e2 

49 1 0 50, c1 0 0 0 0 c1 

50 51, a 0 0 0 0 0 0 a 

51 1 2 0 0 0 52, e2 0 e2 

52 1 0 0 53, e1 0 0 0 e1 

53 1 54, b 0 0 0 0 0 b 

54 1 0 0 0 0 55, e2 0 e2 

55 1 0 0 56, e1 0 0 0 e1 

56 57, a 0 0 0 0 0 0 a 

57 1 2 0 0 0 58, e2 0 e2 

58 1 0 59, c1 0 0 0 0 c1 

59 1 0 0 60, e1 0 0 0 e1 

60 1 61, b 0 0 0 0 0 b 

61 1 0 0 0 0 62, e2 0 e2 

62 1 0 63, c1 0 0 0 0 c1 

63 1 0 0 64, e1 0 0 0 e1 

64 65, a  0 0 0 0 0 0 a 

65 1 2 0 0 0 66, e2 0 e2 

66 1 0 0 0 67, c2 0 0 c2 

67 1 68, b 0 0 0 0 0 b 
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68 1 0 0 0 0 69, e2 0 e2 

69 1 0 0 0 70, c2 0 0 c2 

70 71, a 0 0 0 0 0 0 a 

71 1 2 0 0 0 72, e2 0 e2 

72 1 0 0 0 73, c2 0 0 c2 

73 1 0 74, c1 0 0 0 0 c1 

74 1 75, b  0 0 0 0 0 b 

75 1 0 0 0 0 76, e2 0 e2 

76 1 0 0 0 77, c2 0 0 c2 

77 1 0 78, c1 0 0 0 0 c1 

78 79, a 0 0 0 0 0 0 a 

79 1 2 0 0 0 80, e2 0 e2 

80 1 0 0 0 81, c2 0 0 c2 

81 1 0 0 82, e1 0 0 0 e1 

82 1 83, b 0 0 0 0 0 b 

83 1 0 0 0 0 84, e2 0 e2 

84 1 0 0 0 85, c2 0 0 c2 

85 1 0 0 86, e1 0 0 0 e1 

86 87, a 0 0 0 0 0 0 a 

87 1 2 0 0 0 88, e2 0 e2 

88 1 0 0 0 89, c2 0 0 c2 

89 1 0 90, c1 0 0 0 0 c1 

90 1 0 0 91, e1 0 0 0 e1 

91 1 92, b 0 0 0 0 0 b 

92 1 0 0 0 0 93, e2 0 e2 

93 1 0 0 0 94, c2 0 0 c2 

94 1 0 95, c1 0 0 0 0 c1 

95 1 0 0 96, e1 0 0 0 e1 

⊚96 97, a  0 0 0 0 0 0 a 

97 1 2 0 0 0 0 98, c3 c3 

98 1 99, b 0 0 0 0 0 b 

99 1 0 0 0 0 0 100, c3 c3 

100 101, a 0 0 0 0 0 0 a 

101 1 2 0 0 0 0 102, c3 c3 

102 1  103, c1 0 0 0 0 c1 

103 1 104, b 0 0 0 0 0 b 

104 1 0 0 0 0 0 105, c3 c3 

105 1 0 106, c1 0 0 0 0 c1 

106 107, a 0 0 0 0 0 0 a 

107 1 2 0 0 0 0 108, c3 c3 

108 1 0 0 109, e1 0 0 0 e1 

109 1 110, b 0 0 0 0 0 b 

110 1 0 0 0 0 0 111, c3 c3 
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111 1 0 0 112, e1 0 0 0 e1 

112 113, a 0 0 0 0 0 0 a 

113 1 2 0 0 0 0 114, c3 c3 

114 1 0 115, c1 0 0 0 0 c1 

115 1 0 0 116, e1 0 0 0 e1 

116 1 117, b 0 0 0 0 0 b 

117 1 0 0 0 0 0 118, c3 c3 

118 1 0 119, c1 0 0 0 0 c1 

119 1 0 0 120, e1 0 0 0 e1 

120 121, a 0 0 0 0 0 0 a 

121 1 2 0 0 0 0 122, c3 c3 

122 1 0 0 0 123, c2 0 0 c2 

123 1 124, b 0 0 0 0 0 b 

124 1 0 0 0 0 0 125, c3 c3 

125 1 0 0 0 126, c2 0 0 c2 

126 127, a 0 0 0 0 0 0 a 

127 1 2 0 0 0 0 128, c3 c3 

128 1 0 0 0 129, c2 0 0 c2 

129 1 0 130, c1 0 0 0 0 c1 

130 1 131, b 0 0 0 0 0 b 

131 1 0 0 0 0 0 132, c3 c3 

132 1 0 0 0 133, c2 0 0 c2 

133 1 0 134, c1 0 0 0 0 c1 

134 135, a 0 0 0 0 0 0 a 

135 1 2 0 0 0 0 136, c3 c3 

136 1 0 0 0 137, c2 0 0 c2 

137 1 0 0 138, e1 0 0 0 e1 

138 1 139, b 0 0 0 0 0 b 

139 1 0 0 0 0 0 140, c3 c3 

140 1 0 0 0 141, c2 0 0 c2 

141 1 0 0 142, e1 0 0 0 e1 

142 143, a 0 0 0 0 0 0 a 

143 1 2 0 0 0 0 144, c3 c3 

144 1 0 0 0 145, c2 0 0 c2 

145 1 0 146, c1 0 0 0 0 c1 

146 1 0 0 147, e1 0 0 0 e1 

147 1 148, b  0 0 0 0 0 b 

148 1 0 0 0 0 0 149, c3 c3 

149 1 0 0 0 150, c2 0 0 c2 

150 1 0 151, c1 0 0 0 0 c1 

151 1 0 0 152, e1 0 0 0 e1 

152 153, a 0 0 0 0 0 0 a 

153 1 2 0 0 0 0 154, c3 c3 
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154 1 0 0 0 0 155, e2 0 e2 

155 1 156, b 0 0 0 0 0 b 

156 1 0 0 0 0 0 157, c3 c3 

157 1 0 0 0 0 158, e2 0 e2 

158 159, a  0 0 0 0 0 0 a 

159 1 2 0 0 0 0 160, c3 c3 

160 1 0 0 0 0 161, e2 0 e2 

161 1 0 162, c1 0 0 0 0 c1 

162 1 163, b 0 0 0 0 0 b 

163 1 0 0 0 0 0 164, c3 c3 

164 1 0 0 0 0 165, e2 0 e2 

165 1 0 166, c1  0 0 0 0 c1 

166 167, a  0 0 0 0 0 0 a 

167 1 2 0 0 0 0 168, c3 c3 

168 1 0 0 0 0 169, e2 0 e2 

169 1 0 0 170, e1 0 0 0 e1 

170 1 171, b  0 0 0 0 0 b 

171 1 0 0 0 0 0 172, c3 c3 

172 1 0 0 0 0 173, e2 0 e2 

173 1 0 0 174, e1 0 0 0 e1 

174 175, a 0 0 0 0 0 0 a 

175 1 2 0 0 0 0 176, c3 c3 

176 1 0 0 0 0 177, e2 0 e2 

177 1 0 178, c1 0 0 0 0 c1 

178 1 0 0 179, e1 0 0 0 e1 

179 1 180, b  0 0 0 0 0 b 

180 1 0 0 0 0 0 181, c3 c3 

181 1 0 0 0 0 182, e2 0 e2 

182 1 0 183, c1 0 0 0 0 c1 

183 1 0 0 184, e1 0 0 0 e1 

184 185, a 0 0 0 0 0 0 a 

185 1 2 0 0 0 0 186, c3 c3 

186 1 0 0 0 0 187, e2 0 e2 

187 1 0 0 0 188, c2 0 0 c2 

188 1 189, b  0 0 0 0 0 b 

189 1 0 0 0 0 0 190, c3 c3 

190 1 0 0 0 0 191, e2 0 e2 

191 1 0 0 0 192, c2 0 0 c2 

192 193, a  0 0 0 0 0 0 a 

193 1 2 0 0 0 0 194, c3 c3 

194 1 0 0 0 0 195, e2 0 e2 

195 1 0 0 0 196, c2 0 0 c2 

196 1 0 197, c1 0 0 0 0 c1 
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197 1 198, b  0 0 0 0 0 b 

198 1 0 0 0 0 0 199, c3 c3 

199 1 0 0 0 0 200, e2 0 e2 

200 1 0 0 0 201, c2 0 0 c2 

201 1 0 202, c1 0 0 0 0 c1 

202 203, a  0 0 0 0 0 0 a 

203 1 2 0 0 0 0 204, c3 c3 

204 1 0 0 0 0 205, e2 0 e2 

205 1 0 0 0 206, c2 0 0 c2 

206 1 0 0 207, e1 0 0 0 e1 

207 1 208, b  0 0 0 0 0 b 

208 1 0 0 0 0 0 209, c3 c3 

209 1 0 0 0 0 210, e2 0 e2 

210 1 0 0 0 211, c2 0 0 c2 

211 1 0 0 212, e1 0 0 0 e1 

212 213, a  0 0 0 0 0 0 a 

213 1 2 0 0 0 0 214, c3 c3 

214 1 0 0 0 0 215, e2 0 e2 

215 1 0 0 0 216, c2 0 0 c2 

216 1 0 217, c1 0 0 0 0 c1 

217 1 0 0 218, e1 0 0 0 e1 

218 1 219, b  0 0 0 0 0 b 

219 1 0 0 0 0 0 220, c3 c3 

220 1 0 0 0 0 221, e2 0 e2 

221 1 0 0 0 222, c2 0 0 c2 

222 1 0 223, c1 0 0 0 0 c1 

223 1 0 0 224, e1 0 0 0 e1 

⊚224 - - - - - - -  

 
The number of states in the tables can be found from the formula 2n –1 (n + 1), where n is the exponent 

of the order of the rewrite system. The successive orders 1, 2, 3, 4, 5, 6,  … will have 2, 6, 16, 40, 96, 

224 … states. 

 

8. Boolean circuit for LURS = {���: n ≥ 0} 
We can design a digital logic for a processor, using the universal gate set (AND, OR and NOT), that can 

produce an output equivalent to that from the transition function given the same input. Further 

developments could simplify this function to one using NAND gates alone. 

 

Turing Machine M = (Q, Σ, Γ, δ, q1, qaccept, qreject) 

Q = {q1, q2, q3, q4, q5, qaccept, qreject} 
Σ = {0} 

Γ = {0, x, ⊔}  
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Transition Function δ for LURS = {0�

: n ≥ 0} 

State q  0 x  ⊔  

q1 (q2, ⊔, R) (qreject, x, R) (qreject, ⊔, R) 

q2 (q3, x, R) (q2, x, R) (qaccept, ⊔, R) 

q3 (q4, 0, R) (q3, x, R) (q5, ⊔, R) 

q4 (q3, x, R) (q4, x, R) (qreject, ⊔, R) 

q5 (q5, 0, L) (q5, x, L) (q2, ⊔, R) 

 

The following blank tape configuration table can be used by anyone who wants to test the 

standard transition function above against the Boolean circuit constructed below for any word 

of any length consisting of 0s. (It will only accept if the length is a power of 2.) 

 
 Tape Configurations of δ for LURS = {0�


: n ≥ 0} 

 1 2 … n n + 1 … t(n) 

Input         

1        

2        

3        

…        

n        

n + 1        

…        

t(n)        

 

where 1 ≤ i, j ≤ t(n) and n = length of 0* 

 

8.1 The Boolean circuit 
 

And gate ∧  

Or gate ∨  

Not gate ¬  

 

input: 0n where  n  0   

 

0��
 ≡ binary[2, 2, ⊔qaccept] = (binary[1, 1, q10] ∧ binary[1, 2, ⊔]) ∧  

(binary[2, 1, ⊔] ∧ binary[2, 2, q2⊔])  

 

⊔ ≡ binary[1, 1, ⊔qreject] = (binary[1, 1, q1⊔] ∧ binary[1, 2, ⊔])  

x ≡ binary[1, 1, xqreject] = (binary[1, 1, q1x] ∧ binary[1, 2, ⊔]) 
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0��  ≡ binary[5, 5, ⊔qaccept] = (binary[1,1, q10] ∧ binary[1, 2, 0] ∧ binary[1, 3, ⊔]) ∧  

(binary[2, 1, ⊔] ∧ binary[2, 2, q20] ∧ binary[2, 3, ⊔] ∧ binary[2, 4, ⊔])  ∧ (binary[3, 1, ⊔] ∧ 

binary[3, 2, x] ∧ binary[3, 3, q3⊔] ∧ binary[3, 4, ⊔] ∧ binary[3, 5, ⊔]) ∧ (binary[4, 1, ⊔] ∧ 

binary[4, 2, x] ∧ binary[4, 3, ⊔] ∧ binary[4, 4, q5⊔] ∧ binary[4, 5, ⊔] ∧ binary[4, 6, ⊔]) ∧  

(binary[5, 1, ⊔] ∧ binary[5, 2, x] ∧ binary[5, 3, ⊔] ∧ binary[5, 4, ⊔] ∧ binary[5, 5, q2⊔])) 

 

03 ≡ binary[4, 4, ⊔qreject] = (binary[1, 1, q10] ∧ binary[1, 2, 0] ∧ binary[1, 3, 0]) ∧  

(binary[2, 1, ⊔] ∧ binary[2, 2, q20] ∧ binary[2, 3, 0] ∧ binary[2, 4, ⊔]) ∧  

(binary[3, 1, ⊔] ∧ binary[3, 2, x] ∧ binary[3, 3, q30] ∧ binary[3, 4, ⊔] ∧ binary[3, 5, ⊔]) ∧  

(binary[4, 1, ⊔] ∧ binary[4, 2, x] ∧ binary[4, 3, 0] ∧ binary[4, 4, q4⊔]) 

 

0��
 ≡ binary[7, 7, ⊔qaccept] = (binary[1, 1, q10] ∧ binary[1, 2, 0] ∧ binary[1, 3, 0] ∧ 

binary[1, 4, 0] ∧ binary[2, 1, ⊔] ∧ binary[2, 2, q20] ∧ binary[2, 3, 0] ∧ binary[2, 4, 0] ∧  

binary[3, 1, ⊔] ∧ binary[3, 2, x] ∧ binary[3, 3, q30] ∧ binary[3, 4, 0] ∧ binary[4, 1, ⊔] ∧  

binary[4, 2, x] ∧ binary[4, 3, 0] ∧ binary[4, 4, q40] ∧ binary[5, 1, ⊔] ∧ binary[5, 2, x] ∧  

binary[5, 3, 0] ∧ binary[5, 4, x] ∧ binary[5, 5, q3⊔] ∧ binary[6, 1, ⊔] ∧ binary[6, 2, x] ∧  

binary[6, 3, 0] ∧ binary[6, 4, x] ∧ binary[6, 5, ⊔] ∧ binary[6, 6, q5⊔] ∧ binary[7, 1, ⊔] ∧  

binary[7, 2, x] ∧ binary[7, 3, 0] ∧ binary[7, 4, x] ∧ binary[7, 5, ⊔] ∧ binary[7, 6, ⊔] ∧  

binary[7, 7, q2⊔] 

 

05 ≡ binary[6, 6, ⊔qreject] = (binary[1, 1, q10] ∧ binary[1, 2, 0] ∧ binary[1, 3, 0] ∧ 

binary[1, 4, 0] ∧ binary[1, 5, 0] ∧ binary[2, 1, ⊔] ∧ binary[2, 2, q20] ∧ binary[2, 3, 0] ∧  

binary[2, 4, 0] ∧ binary[2, 5, 0] ∧ binary[3, 1, ⊔] ∧ binary[3, 2, x] ∧ binary[3, 3, q30] ∧  

binary[3, 4, 0] ∧ binary[3, 5, 0] ∧ binary[4, 1, ⊔] ∧ binary[4, 2, x] ∧ binary[4, 3, 0] ∧  

binary[4, 4, q40] ∧ binary[ 4, 5, 0] ∧ binary[5, 1, ⊔] ∧ binary[5, 2, x] ∧ binary[5, 3, 0] ∧  

binary[5, 4, x] ∧ binary[5, 5, q30] ∧ binary[6, 1, ⊔] ∧ binary[6, 2, x] ∧ binary[6, 3, 0] ∧  

binary[6, 4, x] ∧ binary[6, 5, 0] ∧ binary[6, 6, q4⊔]) 

 

Accept = {0��
 ≡ binary[2, 2, ⊔qaccept], 0��

 ≡ binary[5, 5, ⊔qaccept], 0��  ≡ binary[7, 7, ⊔qaccept], 

…} 

Reject = {x ≡ binary[1, 1, xqreject], ⊔ ≡ binary[1, 1, ⊔qreject], 0
3 ≡ binary[4, 4, ⊔qreject],  

05 ≡ binary[6, 6, ⊔qreject], …} 
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A Boolean and a quantum circuit have been constructed for ϵ6 circuit and will be included, with 

full explanation, in a later paper. (The quantum circuit follows via a continuous transition from 

the ‘classical’ one.) 

 
9. URS defined using the infinite alphabet with variables 
Variable Finite Automata  
The URS is effectively a series of closed finite zero-totality alphabets in a process which is repeated to 

infinity. Variable Finite Automaton (VFA), recognize finite languages (finite set of words) with words 

taken from an infinite alphabet �, as discussed by Grumberg et al [9].  We start with a nondeterministic 
Finite Automaton. This is a quintuple A = < �,  ,  !, ", # >, over a finite alphabet Γ, with   as a finite 

set of states, with the set of initial states  !  Q. The transition function δ :   × Γ → 2$ where 2$ is 

the power set of Q, and F  Q is a set of accepting states. We say that a exits q if δ(q, a) ≠ . A run of 

A on a word w = &�&�. . . &� in Γ  (the set of all words formed from the letters in Γ) is defined as a 

sequence of states q = '!'�. . . '� such that the state '!   ! and the state '*  δ('*��, &*) for every 1≤ i 

≤ n. If the state '�  F then the run q is accepted. Where a run exists, w is said to be read along A. L(A), 

the language of the nondeterministic finite automaton A, becomes the set of all words w in which there 

exists an accepting run of A on the input word w. 

Grumberg et al [9] use this quintuple as a second component in their definition of a VFA as a pair 

+ = < �, - >where � is an infinite alphabet and A is a nondeterministic finite automaton, which is 

referred to as the pattern automaton of A. They state that: ‘The (finite) alphabet of A is ΓA = ΣA ∪ X ∪ 

{y}, where ΣA  Σ is a finite set of constant letters, X is a finite set of bounded variables and y is a free 

variable. We refer to the number of bounded variables in A as the width of A. The variables in X ∪{y} 

range over Σ\ΣA.’ (Here, Σ\ΣA is the set difference of Σ and ΣA, that is, all the elements in Σ except 

those of ΣA.) Suppose we take a word & = &�&�. . . &/   �5* read along A (meaning that a run exists in 

A for &), and then take another word, w = 6�6�. . . 6/ �*. The word w from �* is a legal instance of 

& from �5* if  

 

• &i = wi for every &i ∈ ΣA, 

• For xi , xj ∈ X, it holds that wi = wj if and only if xi = xj , and wi , wj ∉  ΣA, and  

• For wi = y and wj ≠ y, it holds that wi ≠ wj. 

 

We interpret what it means for a word w ∈ Σ to be a legal instance of a word v ∈ Σ, given that 

 

�5 = {&/ : 1 ≤ : ≤ �} 

 

where �5 is a finite alphabet of constant letters that sets the word pattern of the VFA. The particular 

word pattern will then be transcribed into the infinite alphabet 

 

� = {6/ : : ≥ 1} 

 

Every letter in the word σ ∈ ΣA is now assigned to every letter in the word w ∈ Σ by matching positions 

j in both words. � is an infinite alphabet where 6/ = &/ such that 1 ≤ : ≤ �. This is the alphabet that the 

variables (bound and free) will range over. For the bound variables 
 

X = {?/ : 1 ≤ : ≤ �} 

 

That is, X is a finite set of bounded variables where ?/ = 6/ such that 1 ≤ : ≤ �. All elements of X have 

a fixed assignment to an element of � that cannot change. For the single free variable 
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{y} = {y : y = 6/, : > �} 

 

That is, @ is the free variable in the set {@}, 6ℎBCB @ = 6/, 6/ ≠ ?/ and : > �. In contrast to the bound 

variables ?/, the y variable is free. Its assignment runs for all the 6/ in � for all : > �. This constraint 

ensures that the bound variables ?/ and the free variable y will not have conflicting assignments because 

they will not be assigned to the same 6/ in �. 

According to Grumberg et. al [9] (with changed notation), a ‘legal instance’ of a word & in �5 ∗ 

(which is another word w in �∗) ‘leaves all occurrences of &/ ∈ �5 unchanged, associates all occurrences 

of ?/ ∈ X with the same unique letter, not in �5, and associates every occurrence of y freely with letters 

from Σ \ �5, different from those associated with X variables’. A word & ∈ �5 ∗ becomes a ‘witnessing 

pattern’ for a word w ∈ �∗
 
iff w is a legal instance of &, and this may be for zero, one, or greater than 

one witnessing patterns & in �5 ∗. For any word w in �∗,  a run of A on w is a run of A on a witnessing 

pattern for w’. The set of words from �
∗

 for which there is a witnessing pattern in its subset �5 ∗ 

becomes the language of A, L(A). 
 

The infinite alphabet  
 

Σ = {6�, 6�, 6E, …} 

 
The infinite URS alphabet with variables  
 

ΓA = ΣA ∪ X ∪ {y} and ΣA ∩ X ∩ {y} = ∅ 

  

ΣA = {w1 = a, w2 = b} 

 

X = {w3 = x1 = c1, w4 = x2 = e1} 

 

{y1, y2} = Σ – (ΣA ∪ X) = {w3+2u = y1 = cu+1, w4+2u = y2 = eu+1} 

 

1 -1 i1 j1 i2 j2 i3 j3 … 

a b c1 e1 c2 e2 c3 e3 … 

  x1 x2 y1 y2 y1 y2 … 

w1 w2 w3 w4 w5 w6 w7 w8 … 

 
LURS = {ϵ1= ab, ϵ2 = abax1bx1, ϵ3 = abax1bx1ax2bx2ax1x2bx1x2,  

ϵ4 = abax1bx1ax2bx2ax1x2bx1x2ay1by1ay1x1by1x1ay1x2by1x2ay1x1x2by1x1x2,  

ϵ5 = abax1bx1 ax2bx2 ax1x2bx1x2ay1by1ay1x1by1x1ay1x2by1x2ay1x1x2by1x1x2ay2by2 ay2x1by2x1ay2x2by2x2 

ay2x1x2by2x1x2ay2y1by2y1ay2y1x1by2y1x1ay2y1x2by2y1x2ay2y1x1x2by2y1x1x2, 

ϵ6= 

abax1bc1ae1be1ac1e1bc1e1ac2bc2ac2c1bc2c1ac2e1bc2e1ac2c1e1bc2c1e1ae2be2ae2c1be2c1ae2e1be2e1ae2c1e1be2c1

e1ae2c2be2c2ae2c2c1be2c2c1ae2c2e1be2c2e1ae2c2c1e1be2c2c1e1ac3bc3ac3c1bc3c1ac3e1bc3e1ac3c1e1bc3c1e1ac3c2

bc3c2ac3c2c1bc3c2c1ac3c2e1bc3c2e1ac3c2c1e1bc3c2c1e1ac3e2bc3e2ac3e2c1bc3e2c1ac3e2e1bc3e2e1ac3e2c1e1bc3e2 

c1e1ac3e2c2bc3e2c2 ac3e2c2c1bc3e2c2c1 ac3e2c2e1bc3e2c2e1ac3e2c2c1e1bc3e2c2c1e1}   
 

Machines for the URS defined using the infinite alphabet with variables are the same as the machines 
for the URS defined using the infinite alphabet without variables. 
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10. Other machines that recognize the URS: Post and finite machine with two pushdown stores 
There exist two other procedures which are equivalent in power, i.e. recognizing the same set of words 

or language, to the Turing machine. These are the Post machine and the Finite machine with two 

pushdown stores [36]. In the tables below we show the flow diagrams for the simplest URS word: ϵ1 = 

ab.  

 

A Post Machine M over Σ ∪ {!} is a flow-diagram with one variable x, which may have as a value any 

word over Σ ∪ {!}, where ! is a special auxiliary symbol.  

 

Post Machine Model  

(Σ = {a, b}) ∪ (V = {a, b}) ∪ {!}  

x = ab ∈ Σ* 

 

Corresponding Turing Machine Model 

(Σ = {a, b}) ∪ (V = {a, b}) ∪ {!}  

x = ab ∈ Σ* 

 

  

 

 

 

 

 

 

 

 

 

START

x = �

REJECT
False

x � x!

x = �

head (x)

True

Reject

RejectReject

head (x) 
head (x)

head (x) 
head (x)

head (x) 
head (x)

head (x) 
head (x)

head (x) 
head (x)

head (x) 
head (x)

head (x) 
head (x)

head (x) 
head (x)

Reject Reject

Reject Reject

Accept

head (x)

head (x)

head (x)

x � tail (x)

x � tail (x)

a

!

b

a

b

!

a

b !

b

�

� ��

x = b!a����

x = ab!����

x =!ab����

a �

b
�

� ��a �

b
�

� ��a �

x = ����!ab
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A Finite Machine with Two Pushdown Stores M over Σ ∪ {Λ} is a flow-diagram with one variable x, 

which may have as a value any word over Σ ∪ {Λ}.  

 
Finite Machine with Two Pushdown Stores Model  

(Σ = {a, b}) ∪ (V = {a, b}) ∪ {Δ} 

x = ab ∈ Σ*, y1 = Λ, y2 = ab 

Corresponding Turing 

Machine Model 

(Σ = {a, b}) ∪ (V = {a, b}) 

x = ab ∈ Σ*, y1 = Δ, y2 = ab 

∈Σ*  

 
 

11. Conclusion 
The hierarchy of machines discussed in this paper and stemming from the Chomsky hierarchy is relevant 

to the way the URS is applied in physics and biology. We can see the repeating fractal structure 

constructed from a finite alphabet in the finite fundamental group of the physical parameters, with its 

alphabet constructed from mass, time, charge and space and their algebraic representations. However, 

their combination in the nilpotent fermionic structure leads to an infinite alphabet representing a 

continuous progression, representing the quantum universe, with an infinite alphabet of unique 

nilpotents, each constructed from units of mass, time, charge and space. Again the possible types of 
fermionic structure naturally fit into a finite alphabet construction, whereas the potentially infinite 

number of fermionic states would require an infinite alphabet representing a continuous progression. In 

biology, a finite alphabet operates for the letter code of the bases A,T, G, C and the 64 codons which 
they construct, while an infinite alphabet is needed for the infinite possibility of genomes constructed 

from them. 

The Rowlands-Diaz universal alphabet and rewrite system appears to provide a meta-pattern for 

mathematics and science, extending from quantum mechanics and particle physics up to biology and 

even consciousness. Here, we have shown that it is compatible with computational and formal language 

theory, using a Turing machine, a Post machine and a Finite machine with two pushdown stores, which 

means that we can apply computational theory and practice directly to all these systems. Mathematics 

gives us a guide to the patterns of Nature, rather than the meta-pattern, because it is structured on exact 
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repetition, e.g. of the integer series 1, 2, 3, 4, 5 …, rather than uniqueness. The meta-pattern is a unique 

birth-ordering in an infinite process, and any reproduction of it will only ever be finite. In addition, 

mathematics only reads, bounded by the zero cardinalities, each of which creates a new algebra. Physics 
requires a unique sequence of events, never repeated, which means that, to simulate it, we must use 

machines that can write as well as read, as in the cases discussed here, which makes its requirements 

different from those of much mathematically-based computational theory, which is frequently 
concerned with pure reading automata. Physics has a special system for obtaining zeros using nilpotents, 

which are each unique and hence at its most basic level can describe a unique birthordering. We see that 

the mathematics most appropriate for this development is a form of Clifford algebra. This does not 

prevent us from developing alternative mathematical ideas, such as the higher Cayley-Dickson algebras, 

but they cannot be used to describe the system itself. The development of a computational representation 

based on the most general devices that can be imagined gives a powerful indication that the Rowlands-

Diaz universal rewrite system provides the most general, generic and efficient description so far known 

for Nature’s most fundamental processes. 
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