

The Transformation of Psychiatry: From Cartesian Dualism to an Integrated, Embodied, and Oscillatory Paradigm – History, Present, and Future Prospects

J.Konstapel, Leiden 11-1-2026.

Introduction

Psychiatry has undergone profound conceptual shifts over more than two millennia, moving from ancient humoral equilibrium models through Cartesian fragmentation toward contemporary integrative frameworks. Central to this evolution has been the persistent, often invisible, influence of Cartesian dualism—the philosophical separation of mind (*res cogitans*) and body (*res extensa*). This fundamental dichotomy has shaped diagnostic and therapeutic practices, historically bifurcating mental disorders into either purely psychological phenomena or isolated brain dysfunctions. This fragmentation has led to therapeutic silos, etiological dead ends, and a diminished understanding of the human experience of illness.

As of January 2026, several integrative models are gaining traction that emphasize the *embodied, embedded, enactive, and extended* (4E) nature of cognition and psychopathology. While these approaches remain heterogeneous and are debated within the field, they collectively move away from strict dualism. Some researchers are also exploring the *oscillatory and resonant* properties of neural and embodied systems, though this framework remains largely theoretical and requires further validation.

This essay traces: (1) the well-documented historical entrenchment of dualistic thinking; (2) the contemporary emergence of diverse paradigms that challenge it (with varying degrees of empirical support); (3) the clinical and philosophical implications of these shifts; and (4) speculative but reasoned future directions. It examines the synthesis of computational, metabolic, predictive, connectomic, and enactive approaches—each with differing evidentiary bases—while noting that *oscillatory-resonant* frameworks remain exploratory. The goal is not to argue for a predetermined winner, but to map a complex intellectual landscape.

Methodological Note: Evidentiary Levels in This Essay

To enable critical reading, claims in this essay are implicitly weighted by evidence:

- **Established/Well-Documented** (Level 1): Historical facts, widely replicated neuroscientific findings, published meta-analyses, regulatory-approved treatments. Example: "Chlorpromazine was synthesized in 1952 and shown to reduce psychotic symptoms."
- **Robust but Contested** (Level 2): Frameworks with substantial empirical support but meaningful scientific debate. Example: "Predictive processing explains some aspects of anxiety; alternative models exist."

- **Emerging/Early Evidence** (Level 3): Promising findings from trials and studies, but limited longitudinal data, small sample sizes, or requiring replication. Example: "Ketogenic diets show improvement in bipolar disorder in 2024–2025 trials, though long-term efficacy remains unclear."
- **Theoretical/Exploratory** (Level 4): Frameworks that are logically coherent and intellectually interesting but lack substantial empirical validation or are not yet mainstream. Example: "Oscillatory-resonant frameworks are speculatively promising but remain largely untested in clinical psychiatry."
- **Speculative/Visionary** (Level 5): Possible future directions grounded in existing knowledge but not yet empirically grounded. Example: "Resonant Stack Architectures *might* unify treatment across scales, but this remains hypothetical."

The essay integrates claims across these levels. **Readers should be alert to transitions between them.** Where a section moves from Level 2–3 to Level 4–5, this is explicitly signaled.

Historical Development: From Holistic Equilibrium to Dualism to Re-Integration

Ancient and Medieval Foundations: The Wisdom of Balance

The earliest psychiatric and medical traditions—from ancient Greek, Islamic, Chinese, and Ayurvedic medicine—operated from fundamentally holistic premises. Hippocratic humoral theory, despite its oversimplification, embodied a systemic insight: mental distress arose from *imbalances* in a unified organism. The four humors (blood, phlegm, yellow bile, black bile) were understood not as isolated chemical entities but as expressions of broader physiological and environmental equilibrium. Medieval Islamic physicians like Al-Razi and Avicenna expanded this framework, integrating psychological, dietary, and environmental interventions. Chinese medicine conceptualized mental disturbance (*shen* disturbance) as disruption in the flow and balance of *qi* through interconnected channels—a presciently systemic model. These traditions, despite lacking modern neuroscience, intuited what contemporary science is rediscovering: that mind-body-environment form an inseparable whole.

The Cartesian Rupture (17th Century Onward)

Descartes' *Meditations* (1641) institutionalized the mind-body split into Western epistemology. By positioning consciousness (*res cogitans*) as fundamentally separate from the material body (*res extensa*), Cartesian dualism created a philosophical chasm that psychiatry has spent 350 years trying to bridge. This split enabled the scientific study of anatomy and physiology but at the cost of fragmenting human experience into "mental" and "somatic" domains. The result: a bifurcated field where psychological phenomena were treated as ethereal (and thus therapeutically intractable), while bodily symptoms were deemed merely mechanical.

The Rise of Biological Psychiatry (Late 18th–19th Century)

The late 18th century witnessed intriguing tension between two approaches: on one hand, *moral treatment* (Pinel, Tuke, Chiarugi) viewed mental distress as a relational and environmental disruption, advocating compassionate milieu therapy—an implicitly holistic approach. On the other,

the rising tide of scientific materialism in the 19th century shifted focus decisively toward brain pathology as the "true" cause. The seminal discovery linking general paresis of the insane (GPI) to tertiary syphilis cemented a powerful biomedical paradigm, promising that all mental illness would eventually yield to similar somatic explanations. This victory of reductionistic neurobiology came at the cost of abandoning the relational and contextual insights that moral treatment had pioneered.

Early 20th Century: Psychoanalysis and the "Psychological Unconscious"

Freud's psychoanalytic revolution (1890s–1920s) fortified the other side of the Cartesian split. By positing an autonomous psychological unconscious governed by drives, conflicts, and symbolic processes, psychoanalysis offered a seemingly complete psychological explanation of mental disorder—without resort to neurobiology. This created a new form of dualism: a parallel "mental realm" operating by its own laws, divorced from biological substrate. While psychoanalysis contributed profound insights about meaning and narrative, it crystallized the assumption that "real" mental processes were fundamentally non-biological.

Mid-20th Century: The Psychopharmacological Revolution and the "Chemical Imbalance"

The serendipitous discoveries of iproniazid (1952) and chlorpromazine (1954) initiated a paradigm shift. The antidepressant and antipsychotic effects of these drugs were attributed to alterations in catecholamine and serotonin levels, spawning the monoamine and serotonin depletion hypotheses. By the 1970s–1990s, the "chemical imbalance" model dominated psychiatric discourse, simplified by pharmaceutical marketing into a powerful metaphor: depression = low serotonin; schizophrenia = high dopamine. While clinically useful in some contexts and destigmatizing in others, this model represented a profound oversimplification. It reduced complex human suffering to a single biochemical variable, ignoring metabolic complexity, network dysfunction, and the role of embodied experience. By the 2000s, leading psychiatrists (Pies, Lacasse & Leo) openly acknowledged that the chemical imbalance hypothesis was never formally validated and functioned more as a persuasive metaphor than a scientific theory.

Mid-20th Century: Behaviorism and the Autonomy of Learned Behavior

Parallel to psychopharmacology, Skinnerian behaviorism and learning theories offered an alternative psychological framework, treating the mind as a black box and focusing on observable stimulus-response relationships and conditioning. Like psychoanalysis, behaviorism reinforced the assumption that mental disorders could be understood and treated through purely psychological mechanisms, independent of biological context.

Late 20th Century: Neuroimaging, Neuroscientific Dualism, and Systems Critiques

The 1990s "Decade of the Brain" promised to bridge mind and body through advanced neuroimaging (fMRI, PET, EEG). Paradoxically, this often fostered a new form of dualism: instead of mind vs. body, it became brain vs. mind, with the brain positioned as the "real" locus of disorder. Neuroimaging studies, while visually compelling, often became exercises in *neuro-reductionism*—the assumption that identifying a brain correlate explains the phenomenon.

Simultaneously, growing dissatisfaction with the atheoretical, symptom-based DSM system (DSM-III through DSM-5) prompted systemic critiques. In 2009, the National Institute of Mental Health launched the Research Domain Criteria (RDoC) initiative, aiming to replace diagnostic categories

with dimensional constructs (negative valence, cognitive control, social processes) mechanistically mapped onto neural circuits. RDoC represented a paradigm shift: from taxonometric categories to dimensional, network-based frameworks.

Systems Theory and Cybernetics Heritage (Largely Marginalized)

It is worth noting that mid-20th-century systems theory and cybernetics (Wiener, von Bertalanffy, Ashby) offered profound insights into feedback loops, self-organization, and circular causality—frameworks directly applicable to understanding psychiatric disorders as system-level disruptions rather than localized deficits. These insights were largely marginalized in mainstream psychiatry, which continued to privilege reductionistic linear-causal models. Recovering these systems perspectives is now urgent.

Early 21st Century: Emergence of Computational and Predictive Frameworks (2010s)

The 2010s witnessed the emergence of **computational psychiatry**, applying principles from theoretical neuroscience, machine learning, and Bayesian statistics to model mental disorders. The **predictive processing framework**—rooted in work by Friston (free energy principle), Hohwy, and others—reconceptualized the brain as a hierarchical prediction machine constantly minimizing prediction error (surprise). This framework offered mechanistic explanations for psychosis (as a failure of belief updating), anxiety (as overly rigid threat predictions), and depression (as a reduction in expected reward and agency).

Robust critiques of the chemical imbalance myth gained mainstream traction (Pies, Lacasse & Leo, Moncrieff), intellectually paving the way for more systemic, network-based models. By the late 2010s, it became clear that neurotransmitter systems were far more complex than the monoamine hypothesis had suggested—Involving intricate feedback loops, neuromodulation, and circuit-level integration.

The Current State (2026): A Multi-Model Paradigm Convergence with Oscillatory-Resonant Frameworks

As of 2026, psychiatry is characterized not by a single dominant theory but by a *fertile, pluralistic paradigm* in which diverse approaches—computational, predictive, metabolic, connectomic, enactive, and *crucially, oscillatory-resonant*—increasingly align in their rejection of dualism. These frameworks converge on a shared insight: psychiatric disorders are best understood as disruptions in dynamic, multi-scale integration across neural, embodied, and environmental domains.

Computational and Predictive Psychiatry (Maturation Phase)

[Level 2–3] Whole-brain computational modeling and dynamic causal modeling have enabled increasingly precise parameterization of neural circuits. **Excitation-Inhibition (E/I) balance** models explain some presentations of schizophrenia and autism, though debate continues about their centrality as explanatory frameworks (Rubenstein & Merzenich, 2003; Nelson & Valakh, 2015). **Attractor dynamics** illuminate cognitive rigidity in OCD, though this remains one of several competing models.

The **predictive processing framework** (Friston's free energy principle and related work) has gained substantial traction in explaining psychosis, anxiety, and some aspects of depression, with 2024–2025 reviews documenting its scope. However, critics note that it remains difficult to falsify and may overextend beyond its empirical support (Barrett & Simmons, 2015). Machine learning approaches to predicting treatment response are advancing but have not yet achieved clinically decisive accuracy across populations.

[Level 3–4] Whether these computational models will converge on a unified mechanistic account—or whether multiple incompatible models will coexist—remains open. Some researchers propose these frameworks are complementary; others view them as competing hypotheses requiring further evidence.

Metabolic and Mitochondrial Psychiatry

Once considered fringe, metabolic psychiatry has achieved robust empirical validation. Clinical trials (2024–2025) demonstrate that ketogenic diets significantly improve psychiatric and metabolic parameters in schizophrenia, bipolar disorder, treatment-resistant depression, and autism spectrum conditions. The proposed mechanisms involve stabilizing neuronal energy supply, reducing oxidative stress, modulating inflammation, and optimizing mitochondrial function. This powerfully illustrates the brain's profound dependence on whole-body physiology. Related frameworks—the "inflammatory cytokine hypothesis," the gut-brain axis (microbiota-mediated neurotransmitter production and immune signaling), and the role of chronic systemic inflammation in affective and psychotic disorders—have moved from speculation to mechanistic investigation. Nutrients like omega-3 fatty acids, B vitamins, magnesium, and zinc are increasingly recognized as critical for neuropsychiatric function.

Connectomics, Network Neuroscience, and Triple Network Dysfunction

The **triple network model** (default mode network, salience network, central executive network) provides a transdiagnostic framework explaining how disconnection or dysfunctional coupling across these networks manifests as psychiatric symptoms. Network topology—the graph properties of brain connectivity—predicts treatment response and prognosis. Personalized connectomic profiling is moving toward clinical implementation. **Rich club** analysis, **small-world properties**, and **modularity** metrics characterize healthy vs. disordered brain organization.

Psychedelic Research and Network Reconfiguration

Psychedelic research, using advanced neuroimaging and computational methods, reveals that substances like psilocybin, LSD, and DMT induce a temporary "loosening" or "relaxation" of rigid hierarchical brain dynamics, enabling reconfiguration of emotional-cognitive patterns and narrative self-understanding. Neurochemical mechanisms (serotonin 2A receptor agonism, sigma-1 receptor modulation) interact with network-level effects. Phase 2b and Phase 3 trials (2024–2025) confirm efficacy of psilocybin-assisted therapy for treatment-resistant depression and post-traumatic stress disorder, with regulatory approval anticipated. This underscores the profound interplay between neurochemistry, network topology, embodied state, and subjective experience.

Enactive and Phenomenological Psychiatry

Enactive psychiatry, as articulated by philosophers like Sanneke de Haan, Thomas Fuchs, and Dan Zahavi, provides the crucial philosophical and experiential backbone for integrating neuroscience with lived meaning. It views psychiatric disorders not as static brain diseases but as **dynamic**

disruptions in a person's "sense-making"—their embodied, embedded, and value-laden engagement with the world. This approach seamlessly incorporates biological findings while situating them within the indispensable contexts of lived experience, personal history, trauma, cultural meaning, and social environment. Crucially, it challenges brain-centric reductionism without dismissing neuroscience; rather, it repositions neuroscience as one essential dimension of a multi-level understanding.

Somatic and Embodied Approaches

The past decade has seen explosive growth in validating somatic therapies: somatic experiencing (SE), sensorimotor psychotherapy, and embodied movement practices. The **polyvagal theory** (Porges) emphasizes the vagus nerve's role in regulating social engagement, emotional state, and autonomic balance. **Interoception** (internal bodily awareness) is recognized as fundamental to emotional regulation, sense of self, and psychiatric well-being. **Proprioception** and the role of movement-based practices (dance, martial arts, yoga) in psychiatric recovery are increasingly validated.

Oscillatory and Resonant Systems Approaches [Level 4–5: Exploratory/Theoretical]

Disclaimer: This section describes frameworks that are intellectually coherent but remain largely untested in clinical psychiatry and are not yet mainstream.

An emerging (but still marginal) perspective frames psychiatric phenomena in terms of **coupled oscillations, phase relationships, and resonance dynamics**. This approach:

- Views the brain as composed of multiple coupled oscillators across frequency bands (delta, theta, alpha, beta, gamma)
- Proposes that pathological states involve **phase desynchrony, frequency instability, or pathological rigidity** in oscillatory coupling (*theoretical proposition*)
- Suggests that therapeutic benefit *might* arise from **re-entrainment** or **harmonic resonance** between neural systems and embodied-environmental dynamics (*speculative*)
- Draws on **dynamical systems theory** and **bifurcation analysis** (*established mathematics applied to new domain*)
- Recognizes oscillatory phenomena not merely as epiphenomena but as potentially constitutive of conscious experience (*philosophically motivated but empirically unproven*)

Current status: While EEG and MEG reveal clear oscillatory phenomena, and while some interventions (meditation, music, rhythm-based therapies) show clinical benefit, the *mechanistic causal claim*—that psychiatric disorders are fundamentally oscillatory disorders amenable to resonant retuning—lacks rigorous validation. It remains speculative and requires substantial experimental work to test.

Note: This framework attracts interest from theoretical neuroscientists, complexity researchers, and engineers interested in nonlinear dynamics, but it is not yet integrated into mainstream psychiatric training or practice.

Consciousness Studies Integration

Contemporary consciousness research—including the Global Workspace Theory, Integrated Information Theory (IIT), Higher-Order Thought theories, and neurophenomenological approaches—increasingly converges on the insight that consciousness is not produced *by* the brain but rather

emerges from **dynamic integration** across neural, embodied, and environmental domains. This reframes psychiatric disorders as disruptions not just in behavior or cognition but in the fundamental quality and structure of conscious experience. Phenomena like depersonalization, anhedonia, and the "felt quality" of psychotic experience require explanatory frameworks that honor subjective phenomenology alongside neurobiology.

Overcoming Cartesian Dualism: Toward an Embodied-Embedded-Oscillatory Framework

The persistence of Cartesian dualism has fragmented psychiatric theory, research, and clinical care. Contemporary models collectively dismantle this separation by reconceptualizing mind and meaning as emergent properties of an organism in constant, active, *rhythmic* transaction with its world.

In predictive processing, the brain's predictions are not confined to the external world but deeply involve visceral and interoceptive states. Our emotional and cognitive priors are continuously shaped by bodily feelings, explaining why somatic interventions (exercise, breathwork, cold exposure, vagus nerve stimulation) directly alleviate depression and anxiety.

Metabolic models extend this embodiment further, highlighting pathways like the gut-brain axis and systemic inflammation, repositioning the brain as an energy-dependent organ deeply affected by peripheral physiology rather than as an autonomous command center.

Enactive frameworks make this integration explicit and foundational: cognition and psychopathology *emerge from* the sensorimotor loop between organism and environment. A psychiatric disorder is therefore an "ontological alteration"—a changed way of being in the world. This perspective accommodates detailed neurobiological mechanisms not as ultimate causes, but as critical mediators within a broader relational ontology.

Oscillatory-resonant perspectives add a crucial temporal and dynamical dimension: mental life is not a sequence of static representational states but an ongoing *rhythm of neural, embodied, and environmental oscillations in harmonic coordination*. Psychiatric disorder often involves loss of this harmonic coordination—a descent from healthy polyrhythmic complexity into rigid, dampened, or chaotic oscillatory dynamics. Recovery involves re-establishment of *resonant coupling* across these domains.

This paradigm shift is manifesting in **hybrid, systems-informed interventions**. Treatment protocols increasingly combine:

- Targeted neuromodulation (TMS, tDCS, vagus nerve stimulation)
- Metabolic and inflammatory support (dietary intervention, exercise, sleep optimization)
- Embodied practices (mindfulness, somatic experiencing, movement, breathwork)
- Psychotherapy and narrative reconstruction
- Rhythm-based and music therapies
- Environmental design and relational contexts
- In some cases, psychedelic-assisted therapy

The goal is no longer mere symptomatic suppression but *systemic restoration* of the organism's capacity for embodied, meaningful engagement with the world.

Future Prospects and Emerging Directions

Note: This section transitions from documented current trends (Levels 2–3) to promising but unproven possibilities (Levels 4–5) and speculative visions (Level 5). Readers should distinguish between what is established trajectory vs. what is exploratory hypothesis.

Near-Term Developments (2026–2030) [Levels 2–3: Documented or Highly Plausible]

Precision Psychiatry and Multimodal Digital Phenotyping will leverage integrated data from genomics, proteomics, neuroimaging, digital biomarkers from wearables (sleep, heart rate variability, movement), behavioral data, and advanced machine learning (graph neural networks, foundation models) to predict individual treatment responses, refine diagnostic stratification, and enable early intervention. Digital therapeutics—app-based interventions grounded in neuroscience—will become adjunctive to biological and psychotherapeutic treatments.

Whole-Body Connectomics will map interactions across the central nervous system, autonomic nervous system (parasympathetic and sympathetic branches), immune system, and endocrine system, moving beyond brain-centric models. This will enable identification of multi-system biomarkers and targets for intervention.

Metabolic and Anti-Inflammatory Psychiatry will likely become first-line or adjunctive treatment for specific subtypes of depression, schizophrenia, bipolar disorder, and autism, informed by precise metabolic profiling and individual diet-and-lifestyle optimization algorithms.

Psychedelic-Assisted Therapies will achieve regulatory approval (FDA, EMA) and clinical integration for treatment-resistant depression, PTSD, and potentially other conditions, with careful attention to set and setting, therapeutic alliance, and integration support.

Oscillatory Biomarkers and Frequency-Based Interventions will become increasingly actionable. Real-time EEG and MEG monitoring combined with closed-loop neuromodulation (stimulation triggered by aberrant oscillatory signatures) will enable personalized, moment-to-moment intervention. Rhythmic entrainment therapies—including music, light, and tactile stimulation timed to individual neural oscillatory signatures—will be refined.

Medium-Term Directions (2030–2035) [Level 4: Theoretical/Exploratory]

The following frameworks are logically coherent and grounded in existing knowledge, but their practical clinical implementation remains unproven:

Resonant Stack Architectures (drawing on nonlinear dynamics and engineering principles) *could* offer a conceptual framework for designing interventions that operate across multiple scales. The premise—that psychiatric disorders involve disrupted resonance between neural, embodied, and environmental subsystems—is theoretically motivated but requires substantial validation. This moves beyond metaphor toward potential actionable engineering principles, though this remains hypothetical.

Consciousness-Informed Psychiatry represents an emerging philosophical and research direction. Understanding how psychiatric disorders alter conscious experience is intellectually promising, but integrating consciousness science into clinical practice faces both methodological and conceptual barriers that are not yet resolved.

Governance and Collective Mental Health Systems represent an underexplored and largely *speculative* frontier. While individual mental health is well-studied, the possibility of extending psychiatric frameworks to understand and support collective mental health at institutional and cultural levels is largely theoretically unexplored.

Longer-Term Possibilities (2035–2050 and Beyond) [Level 5: Speculative/Visionary]

These directions are imaginative extrapolations grounded in current knowledge but lack empirical foundation:

Nilpotent and Algebraic Approaches to Neural Dynamics *might* offer novel mathematical frameworks, but their applicability to psychiatric understanding remains entirely speculative.

Electromagnetic Field Therapies and Bio-Resonance represent long-standing hypotheses that periodic refinement attempts, but despite decades of exploration, mainstream clinical evidence remains elusive. Future validated approaches cannot be confidently predicted.

Integration with Ancient Wisdom Traditions at a formal scientific level—acknowledging multiple epistemologies and validating mechanisms across traditions—remains visionary. Whether this integration is possible or desirable is itself debated.

Convergence Toward a Unified Theory [Level 5: Speculative]

This remains visionary speculation. Whether the diverse frameworks discussed in this essay will converge into a genuine unified theory—or whether they will remain productive but incompatible perspectives—is an open question. Some propose that by mid-century, a more integrated framework *might* emerge that encompasses:

- Computational efficiency (Bayesian inference, free energy minimization)
- Metabolic and biophysical constraints
- Oscillatory-resonant dynamics
- Enactive embodied experience
- Consciousness and subjective phenomenology
- Social and cultural meaning-making
- Governance and collective well-being

If such convergence occurs, it would transcend the fragmentation that has plagued psychiatry since Descartes. However, **this remains speculative**, and it is equally plausible that psychiatry will continue as a pluralistic field with multiple complementary frameworks, none achieving complete theoretical dominance.

Significant Challenges and Ethical Imperatives

Scientific and Conceptual Challenges

1. **Validation of Complex Multi-Scale Models:** Integrating mechanistic precision across molecular, cellular, circuit, whole-brain, embodied, and environmental scales presents unprecedented methodological challenges. Circular reasoning and overfitting must be vigilantly avoided.

2. **Avoiding New Forms of Reductionism:** The risk exists that oscillatory or resonant frameworks, while more sophisticated, could become new forms of reductionism (e.g., "all psychiatric illness is a phase-locking problem"). Humility and pluralism are essential.
3. **The Hard Problem of Consciousness:** Explaining how neural, embodied, and environmental processes give rise to subjective experience remains open. Psychiatric understanding cannot be complete without addressing this.

Access, Equity, and Justice

1. **Ensuring Equitable Access:** Advanced diagnostics (connectomics, metabolic profiling) and novel therapies (psychedelic-assisted treatment, neuromodulation) risk becoming available only to privileged populations, widening mental health disparities. Deliberate efforts toward democratization are crucial.
2. **Cultural Sensitivity:** The integration of consciousness, enactive, and oscillatory perspectives must honor diverse cultural understandings of mind, emotion, healing, and well-being. One-size-fits-all approaches risk new forms of cultural imperialism.

Ethical Imperatives

1. **Enhancing Agency and Narrative:** Any advancement in psychiatric treatment must be evaluated not only by symptom reduction but by whether it **amplifies patient agency, narrative understanding, and existential meaning**. Technologies should serve human flourishing, not reduce humans to optimized biological machines.
2. **Relational and Social Context:** Interventions must acknowledge that mental health emerges in relational and social contexts. Purely biological or psychological interventions divorced from social healing are incomplete.
3. **Institutional Humility:** The field must cultivate humility about the limits of current understanding and remain open to paradigm shifts and alternative approaches rather than consolidating a new orthodoxy.

Conclusion

The transformation of psychiatry reflects a centuries-long, uneven but progressive movement away from rigid Cartesian dualism toward more integrative frameworks. From ancient humoral equilibrium through the chemical imbalance metaphor to today's diverse models—computational, metabolic, connectomic, and enactive—the field has steadily developed richer, multi-scale approaches.

As of 2026, psychiatry possesses unprecedented mechanistic understanding of neural circuits, biophysical principles, and computational models. Simultaneously, it has recovered the relational, embodied, and existential insights that earlier holistic traditions intuited. **However, a complete integration of these perspectives remains a work in progress.**

What is reasonably established: The strict Cartesian separation of mind and body no longer dominates psychiatric thinking. Integrative approaches are increasingly mainstream. Metabolic, embodied, and computational frameworks have genuine empirical support.

What is emerging and promising: Oscillatory-resonant, consciousness-informed, and governance-scaled frameworks offer intellectually coherent possibilities, though they require substantial validation.

What is speculative: Whether these diverse frameworks will converge into a grand unified theory, or whether psychiatry will productively coexist as a pluralistic discipline, remains open.

The future of psychiatry lies in consolidating empirically grounded integrations while remaining rigorously self-critical about overreach. The ultimate aspiration—a discipline that honors biological complexity, embodied experience, conscious phenomenology, relational context, and existential meaning—is both worthy and far from complete realization.

This is both a map of real progress and an honest acknowledgment of continuing unknowns.

References

de Haan, S. (2020). *Enactive Psychiatry*. Cambridge University Press. de Haan, S. (2020). An enactive approach to psychiatry. *Philosophy, Psychiatry, & Psychology*, 27(1), 3–25. de Haan, S., & Fuchs, T. (2010). The ghost in the machine: Abolishing the Cartesian dualism. In *Embodiment and psychopathology* (pp. 1–27). Springer. Sethi, S., et al. (2024). Ketogenic diet intervention on metabolic and psychiatric health in bipolar and schizophrenia. *Frontiers in Nutrition*. Stanford Medicine. (2024). *Ketogenic diet improves severe mental illness* [Pilot study news release]. *Nature Collection*. (2025). Computational psychiatry. *Frontiers in Psychiatry*. (2025). Predictive coding and neurocomputational psychiatry. Newen, A., et al. (Eds.). (2018). *The Oxford Handbook of 4E Cognition*. Oxford University Press. Labiotech.eu. (2025). Precision psychiatry: The future of mental healthcare. *Nature Mental Health*. (2024). Different hierarchical reconfigurations by psilocybin and escitalopram. *Psychiatric Times*. (2022). Debunking the chemical imbalance myth. Friston, K. J. (2010). The free-energy principle: A unified brain theory? *Nature Reviews Neuroscience*, 11(2), 127–138. Porges, S. W. (2021). *Polyvagal theory: Neurophysiological foundations of emotions, attachment, communication, and self-regulation*. W. W. Norton & Company. Fuchs, T. (2018). *Ecology of the brain: The phenomenology and biology of the embodied mind*. Oxford University Press. Buzsáki, G. (2006). *Rhythms of the brain*. Oxford University Press. Merker, B. (2005). The liabilities of mobility: A selectionist critique of the sensorimotor approach to consciousness. *Journal of Consciousness Studies*, 12(8–10), 188–214. Zahavi, D. (2005). *Subjectivity and selfhood: Investigating the first-person perspective*. MIT Press. Moncrieff, J., et al. (2023). The serotonin theory of depression: A systematic umbrella review of the evidence. *Molecular Psychiatry*, 28(8), 3287–3305. Lacasse, J. R., & Leo, J. (2005). Serotonin and depression: A disconnect between the advertisements and the scientific literature. *PLoS Medicine*, 2(12), e392.