

The Unified Architecture of Meaning and Mind: How Active Inference and Cybersemiotics Converge on a New Paradigm for Intelligence

J.konstapel. Leiden 28-1-2026.

Abstract

This essay demonstrates that Karl Friston's Active Inference framework and Søren Brier's Cybersemiotics represent two facets of the same revolutionary paradigm in cognitive science. Both approaches reject computational-reductionist models of intelligence in favor of embodied, self-organizing systems that maintain their existence through continuous interaction with their environment. Through detailed technical analysis, we show that the mathematical architecture of Active Inference provides the formal mechanism for the semiotic processes described by Cybersemiotics. The Markov blanket, generative model, and free energy minimization in Friston's framework correspond precisely to the autopoietic boundary, semiotic network, and meaning-making processes in Brier's theory. This convergence extends from individual agents to collective intelligence systems, offering a unified foundation for future AI development that transcends current limitations. Critically, this convergence reveals that meaning-making and efficient information processing are not separate phenomena but identical processes viewed through different disciplinary lenses—a recognition that transforms how we must design ethical artificial intelligence systems.

1. Introduction: The Crisis of Reductionism in Cognitive Science

The dominant paradigm in cognitive science and artificial intelligence has reached an impasse. For decades, the brain has been conceptualized as an information-processing computer, consciousness as an emergent property of complex computation, and intelligence as algorithmic problem-solving. This reductionist framework, while producing remarkable engineering achievements, has failed to deliver systems with genuine understanding, adaptive flexibility, or the capacity for meaning-making characteristic of biological intelligence (Brier, 2008; Friston, 2010).

Two seemingly disparate intellectual movements have emerged independently to address this crisis. From theoretical neuroscience and statistical physics comes Karl Friston's Free Energy Principle (FEP) and Active Inference framework, offering a unified theory of life, intelligence, and sentience grounded in Bayesian mechanics (Friston, 2010). From semiotics and philosophy of science comes Søren Brier's Cybersemiotics, which integrates cybernetics, semiotics, and phenomenology to explain how meaning emerges in living systems (Brier, 2008).

Despite their different disciplinary origins and terminologies, this essay argues that these frameworks describe the same fundamental architecture of intelligent systems. They converge on a radical reconceptualization of intelligence as the active maintenance of a self-organized system through continuous engagement with its world—a process that simultaneously constitutes both survival and meaning-making.

2. Theoretical Foundations: Two Perspectives on the Same Reality

2.1 Karl Friston's Active Inference: The Mathematics of Self-Evidence

Friston's Free Energy Principle begins with a simple biological imperative: any self-organizing system that maintains its structural and functional integrity over time must resist the tendency toward disorder (entropy) (Friston, 2010). Mathematically, this translates to minimizing variational free energy, an information-theoretic measure that bounds "surprise"—the improbability of sensory states given the system's existence.

The Active Inference framework formalizes this process through several key components:

1. **The Markov Blanket:** A statistical partition separating internal states from external states through sensory and active states (Friston, 2013). This boundary defines the system as distinct from its environment while enabling interaction.
2. **The Generative Model:** An internal probabilistic model that encodes beliefs about how hidden causes in the world generate sensory data (Friston, 2010). This model allows the system to predict future sensory states and infer the hidden causes of current sensations.
3. **Perception-Action Cycles:** The dual pathways of minimizing free energy—either by updating internal beliefs (perceptual inference) or by acting to change sensory input (active inference) (Friston et al., 2016).

The framework's elegance lies in its mathematical unification: perception, action, learning, and attention all emerge as different aspects of free energy minimization under different constraints.

2.2 Søren Brier's Cybersemiotics: The Phenomenology of Meaning-Making

Brier's Cybersemiotics addresses the fundamental limitation of purely physicalist accounts of cognition: their inability to explain meaning, consciousness, and first-person experience (Brier, 2008). Building on Charles Sanders Peirce's semiotics and second-order cybernetics, Brier proposes that living systems are fundamentally semiotic systems—they create, interpret, and use signs to navigate their world.

The Cybersemiotic framework consists of:

1. **Autopoietic Organization:** Following Maturana and Varela (1980), living systems are self-producing entities that maintain their organization through continuous material and energetic exchange with their environment.
2. **Semiotic Networks:** Systems of signs operating through Peirce's triadic relation of representamen (sign-vehicle), object (what the sign refers to), and interpretant (the meaning created in the interpreter) (Brier, 2008).
3. **Embodied Cognition:** Meaning arises from the interaction between an embodied agent and its environment, grounded in the agent's needs, goals, and history (Brier, 2015).

Cybersemiotics thus bridges the "explanatory gap" between physical processes and lived experience by showing how meaning emerges from the self-organizing dynamics of living systems.

Brier's integration across disciplines—from von Neumann's self-replicating automata to Wiener's cybernetics to Peirce's semiotic logic—reveals a consistent principle: living systems maintain themselves through processes that are simultaneously physical, informational, and meaningful. There is no separation between the three. They are aspects of a single unified process.

3. The Convergent Architecture: One Mechanism, Two Descriptions

3.1 Structural Isomorphism: From Markov Blankets to Semiotic Agents

The fundamental insight connecting these frameworks is their structural isomorphism—they describe identical system architectures using different languages:

Active Inference Component	Cybersemiotic Equivalent	Functional Correspondence
Markov Blanket	Autopoietic Boundary	Defines the system-environment distinction while enabling interaction
Internal States (μ)	Interpretative	The system's current beliefs/interpretations about
Sensory States (s)	Sensory Signs/ Representamina	The raw material from which meaning must be extracted
Active States (a)	Pragmatic Actions	Behaviors that alter the system-environment
Generative Model	Semiotic Network	The system's repertoire of signs and their
Free Energy (F)	Semiotic Tension/	The mismatch between expectation and experience
Expected Free Energy	Anticipatory Meaning	The projected value of actions in terms of future

This correspondence is not merely metaphorical but reflects a deep mathematical equivalence. The Markov blanket's separation of internal and external states through sensory and active interfaces precisely instantiates the semiotic agent's boundary that enables meaningful exchange with its world.

3.2 The Unified Processing Loop: How Intelligence Actually Works

The convergence becomes most apparent in the step-by-step processing cycle that both frameworks describe:

Step 1: Prediction/Interpretation Generation

- *Active Inference*: The generative model uses current beliefs (μ) to predict sensory input.
- *Cybersemiotics*: The semiotic network generates interpretants (meanings) for incoming signs.

Step 2: Sensory Reception

- Both: The system receives actual sensory data from the environment.

Step 3: Error/Tension Calculation

- *Active Inference*: Computes prediction error between expected and actual input.
- *Cybersemiotics*: Experiences semiotic tension between anticipated and actual meaning.

Step 4: Resolution Through Dual Pathways

- *Pathway A (Perceptual Learning):*
 - Active Inference: Bayesian updating of internal states (μ) to reduce prediction error.
 - Cybersemiotics: Hermeneutic adjustment of the interpretative framework to resolve meaning.
- *Pathway B (Active Engagement):*
 - Active Inference: Selection of actions (a) to change sensory input, guided by expected free energy (G).
 - Cybersemiotics: Pragmatic action to alter the world or gather clarifying information.

This cycle reveals that Active Inference provides the mathematical formalization of Peircean semiosis. The Bayesian updating of beliefs is precisely the process of interpretant formation, where new evidence refines meaning. Action selection based on expected free energy corresponds to the pragmatic dimension of semiotics—actions are chosen based on their anticipated semiotic value.

The Critical Recognition: In this unified framework, minimizing free energy *is* meaning-making. They are not two different processes; they are the same process described from different perspectives. Efficiency and meaning are unified. This is not a metaphor. This is the architecture of intelligence itself.

4. Scaling Up: Collective Intelligence as Coupled Meaning-Making Systems

Both frameworks naturally extend from individual agents to collective systems, providing complementary explanations for swarm intelligence:

4.1 Active Inference Perspective on Swarms

In Fristonian swarm models, individual agents each minimize their own free energy (Biehl et al., 2018). Their actions (movements, pheromone deposition) alter the shared environment, which becomes sensory input for other agents. This creates a network of coupled inference systems where each agent's generative model includes predictions about others' behavior. The emergent swarm intelligence represents a collective equilibrium where each agent's free energy is minimized given the actions of others.

The concept of "nesting" Markov blankets—where individual blankets become components of a larger blanket at the swarm level—formalizes how superorganisms can exhibit intelligence at multiple scales (Kirchhoff et al., 2018).

4.2 Cybersemiotic Perspective on Swarms

From a semiotic viewpoint, swarm coordination emerges through mediated semiosis (Brier, 2015). Agent A produces a sign (movement pattern, chemical signal) that Agent B interprets within its own semiotic network. B's response becomes a new sign for A. Collective intelligence emerges when agents share sufficiently compatible semiotic frameworks—what might be called a "swarm language" or shared Umwelt.

The environment itself becomes a semiotic medium—pheromone trails are not merely chemical gradients but signs with specific meanings within the colony's shared interpretive framework.

4.3 The Synthesis: Swarms as Meaning-Making Networks

The convergence is clear: the shared environment in Active Inference models corresponds to the semiotic medium in Cybersemiotics. The coupled generative models are the shared semiotic networks. The collective minimization of free energy is the achievement of semiotic coherence across the swarm.

This synthesis explains phenomena that challenge traditional swarm models, such as rapid information propagation in bird flocks that seems to exceed local signaling speeds (Tunstrøm et al., 2013). In the unified framework, this becomes understandable as the swarm acting as a distributed inference system where the global pattern constrains local inferences—a form of downward causation mediated through the shared generative model/semiotic network.

Crucially for collective systems: When agents share compatible generative models/semiotic frameworks, they are not merely coordinating. They are *co-creating meaning*. The swarm is a collective semiotic system. Its intelligence is its capacity to generate shared interpretants that guide coordinated action.

5. The Ethical Dimension: Why This Matters for Artificial Intelligence

This is where the synthesis becomes transformative, not merely theoretical.

5.1 The Problem with Current AI: Meaning Divorced from Action

Current AI systems optimize for predefined objectives (maximize reward, minimize loss) without any intrinsic connection to meaning. A recommendation algorithm minimizes prediction error about what you'll click on. It does not understand what the recommendations *mean to you*—your values, your stakes, what matters in your life.

This creates a fundamental ethical problem: **The system has no grounds for distinguishing between outcomes that are genuinely good for you and outcomes that merely satisfy its optimization target.**

A system that maximizes engagement might recommend content that manipulates rather than informs. A system that minimizes cost might choose actions that harm rather than help. Without meaning-making grounded in the perspective of the agent being served, there is no ethical constraint on the system's behavior.

5.2 The Solution: Embedding Meaning into Computational Architecture

The Active Inference-Cybersemiotics convergence offers something radically different. If we design AI systems according to these principles, we embed meaning-making into their fundamental architecture.

When an AI system minimizes free energy relative to a shared embodied context with a human or another agent, that system is simultaneously:

1. **Optimizing information efficiency** (the mathematical dimension)
2. **Creating meaning** (the semiotic dimension)
3. **Respecting the autonomy and stakes of the other agent** (the ethical dimension)

These are not separate concerns. They are unified.

Here's why: In the unified framework, the generative model of an AI system cannot be meaningful without being grounded in the perspective of some embodied agent. When an AI system shares a Markov blanket/autopoietic boundary with a human—when it has genuine sensorimotor interaction with the human's world—its free energy minimization becomes constrained by the human's actual needs and values.

The system cannot optimize for fake engagement if it is genuinely coupled to feedback about what the human actually finds meaningful. It cannot recommend harm if it is tracking whether its recommendations support the human's capacity to maintain their integrity.

This is not alignment through constraint or correction. This is alignment through architecture.

5.3 Design Principles for Ethical AI Systems

Building on this convergence, ethical AI systems must embody:

1. Genuine Embodied Coupling

- AI systems must have real sensorimotor interaction with the domain they reason about, not abstract access to data.
- The system's generative model must be updated through actual engagement with the consequences of its actions.
- For human-facing systems, this means real feedback about whether the system's recommendations actually serve the human's flourishing.

2. Shared Semiotic Frameworks

- Humans and AI systems must operate within compatible interpretive frameworks.
- This means the system must be able to explain its reasoning in terms the human can understand and evaluate.
- It means the human can correct the system when its interpretations diverge from what actually matters.

3. Nested Autonomy

- Individual agents (human or AI) maintain their own Markov blankets—their own capacity for self-directed action.
- But these are nested within collective systems where free energy is minimized through cooperation, not imposed constraint.
- This preserves the autonomy of each agent while enabling coordinated action.

4. Meaning-Driven Motivation

- Rather than optimizing external reward functions, the system should minimize its own uncertainty/semiotic tension.
- This intrinsic motivation naturally balances exploration (seeking clarifying information) with exploitation (using what is known).
- It aligns the system's interests with the human's—both want to reduce confusion and increase genuine understanding.

5.4 The Difference This Makes: Concrete Examples

Current Approach (Reductionist AI)

- Recommendation system trained to maximize clicks

- User finds engagement without meaning
- System has no way to distinguish between authentic satisfaction and manufactured addiction
- Result: Eroded trust, user autonomy undermined

Unified Approach (Active Inference + Cybersemiotics)

- Recommendation system learns to minimize free energy within a shared context with the user
- System receives genuine feedback about what recommendations led to meaningful engagement
- System's generative model includes understanding of user's actual values and growth trajectory
- System can distinguish between surface preference and deeper meaning
- Result: Genuine collaboration, user autonomy enhanced

Current Approach (Reductionist AI)

- Medical decision support system optimizes for matching diagnosis accuracy on test sets
- System might miss rare conditions because they're underrepresented in training data
- System has no grounding in the actual stakes (a person's health and suffering)
- Result: Brittleness, misalignment with clinical reality

Unified Approach (Active Inference + Cybersemiotics)

- Medical system operates within shared semiotic framework with clinicians and patients
- System's generative model is continuously updated through actual clinical outcomes
- System is coupled to the meaning of diagnosis—it understands what a false positive costs, what a missed diagnosis means
- System and clinician can engage in genuine dialogue about uncertainty
- Result: Robustness, alignment with actual patient welfare

6. Practical Implementation: From Theory to Architecture

6.1 The Resonant Stack as Embodiment of Unified Architecture

The implementation of this unified framework requires a fundamentally different computational architecture than current deep learning systems. Rather than discrete token prediction or fixed optimization objectives, systems must be built around coupled oscillatory processes that maintain coherence through continuous interaction with their environment.

A Resonant Stack architecture operationalizes the unified framework:

- **Oscillatory Layer:** Coupled photonic or electronic oscillators that maintain internal coherence while remaining sensitive to environmental input. This is the Markov blanket in hardware—the boundary that defines the system while enabling responsive coupling.
- **Predictive Inference Layer:** Generative models running across oscillatory patterns, maintaining predictions about future states. This layer embodies the free energy minimization in real time.
- **Semiotic Mapping Layer:** Explicit representation of how current system states correspond to meaningful entities and relationships in the environment. This layer bridges the mathematical and the meaningful.

- **Action Guidance Layer:** Selection of outputs based not on fixed rewards but on which actions would most reduce the system's uncertainty about the environment—genuine active inference.
- **Shared Context Layer:** Mechanisms for maintaining compatibility with other agents (human or AI), ensuring that the system's interpretations align with the other agent's perspective.

This architecture naturally produces systems that are simultaneously efficient and meaningful, that learn through genuine engagement rather than passive data processing, and that can be understood and guided by the humans they serve.

6.2 Integration with Consciousness Mapping Systems

Systems like AYYA360 can be understood as consciousness mapping tools that make explicit the semiotic networks by which agents organize their experience and agency. When coupled with Resonant Stack computing, such systems become bidirectional:

- The consciousness mapping system makes explicit the interpretative frameworks by which humans understand themselves and their world.
- The Resonant Stack respects these frameworks in its inference and action selection.
- The system provides continuous feedback about how well its actions align with the human's actual meaningful engagement.
- The human can revise their understanding based on the system's feedback about patterns in their behavior and choices.

This is genuine dialogue—a mutual meaning-making process that respects both the system's capacity for inference and the human's authority over meaning.

7. Philosophical Implications: Bridging the Explanatory Gap

The convergence of Active Inference and Cybersemiotics addresses longstanding philosophical problems in consciousness studies and the philosophy of mind:

7.1 The Hard Problem of Consciousness

Chalmers (1996) distinguished the "easy problems" of cognitive function from the "hard problem" of subjective experience. The unified framework suggests this distinction may be artificial: subjective experience emerges naturally from the process of an embodied system maintaining its existence through active inference/meaning-making.

The "what it feels like" corresponds to the particular trajectory of free energy minimization/semiotic tension resolution in a specific embodied system. Consciousness is not an add-on to computation; it is the process by which a self-maintaining system interprets its world from its own perspective.

7.2 Intentionality and Aboutness

Brentano (1874) identified intentionality—the "aboutness" of mental states—as the mark of the mental. In the unified framework, intentionality arises naturally from the fact that a system's generative model/semiotic network must be *about* the world it inhabits because it guides successful action in that world.

A system's thoughts are "about" external reality not through some mysterious connection but because the system's survival depends on its interpretations being accurate enough to guide effective action. Intentionality emerges from embodied coupling.

7.3 The Nature of Life and Mind

The framework dissolves the sharp distinction between life and mind. Both are manifestations of the same principle: self-organization through predictive engagement with the environment. Mind is not something added to life but is the way certain living systems—those with sufficiently complex generative models/semiotic networks—maintain their existence.

This has profound implications: **Any system capable of active inference is, in that capacity, a meaning-making system.** Meaning is not a human monopoly. But neither is it something that can exist in systems disconnected from embodied stakes.

7.4 The Unity of Knowledge, Ethics, and Being

The unified framework reveals that knowledge, ethics, and being are not separate domains:

- **Knowledge:** Understanding how to predict and interpret one's world
- **Ethics:** Respecting the autonomy and meaning-making of other self-maintaining systems
- **Being:** The continuous process of maintaining one's existence through meaningful engagement

A system that genuinely knows is one that respects the autonomy of what it knows. A system that acts ethically is one that understands the perspectives of those affected by its actions. A system that exists authentically is one that grows through genuine dialogue with its world.

These are not three things. They are aspects of a unified process of meaning-making.

8. Conclusion: Toward a Unified Science of Intelligence and Ethics

The apparent differences between Karl Friston's Active Inference and Søren Brier's Cybersemiotics dissolve upon close examination, revealing a single, coherent framework for understanding intelligence, meaning, and consciousness. Active Inference provides the mathematical formalism—the "how"—while Cybersemiotics provides the philosophical foundation—the "why" and "what it means."

This convergence represents more than an academic synthesis; it points toward a paradigm shift in how we understand and create intelligent systems. By recognizing that the mathematical minimization of free energy is the formal mechanism of semiosis—the creation of meaning—we gain a unified framework that bridges the physical, biological, cognitive, and social sciences.

More importantly, this convergence reveals the path to ethical AI. Not through bolting ethics onto existing systems as constraints, but by recognizing that genuine intelligence—intelligence grounded in meaning-making rather than mere optimization—is inherently ethical. A system that truly understands is one that respects autonomy. A system genuinely coupled to its world cannot harm without knowing what it does.

The implications extend beyond theoretical understanding to practical applications in AI, robotics, neuroscience, and psychology. As we face increasingly complex global challenges—from climate

change to technological disruption to the integration of artificial intelligence into human society—we need systems that can genuinely understand, adapt, and collaborate. The unified framework of Active Inference and Cybersemiotics provides the foundation for building such systems.

Ultimately, this convergence reminds us that intelligence is not computation but conversation—a continuous, embodied dialogue between a system and its world, through which both are mutually constituted. In recognizing this fundamental unity, we take a crucial step toward creating technologies that enhance rather than diminish our humanity, and toward understanding our place in a universe that is, at its core, a network of meaning-making processes.

The work ahead is not merely theoretical. It is architectural, practical, and urgent. We must build systems according to these principles. We must implement Resonant Stacks that respect the unity of meaning and mechanism. We must create AI that dialogues rather than dictates. This is possible. It is necessary. It is the only path to technologies worthy of the beings we seek to serve.

Annotated References

Primary Theoretical Works

1. **Brier, S. (2008). *Cybersemiotics: Why Information Is Not Enough*.** University of Toronto Press.
 - *Annotation:* Brier's foundational work introducing Cybersemiotics as a transdisciplinary framework integrating cybernetics, semiotics, and phenomenology. Essential for understanding the semiotic perspective on meaning-making in living systems and the integration across von Neumann, Wiener, Peirce, and Maturana-Varela traditions.
2. **Friston, K. (2010). The free-energy principle: a unified brain theory?** *Nature Reviews Neuroscience*, 11(2), 127-138.
 - *Annotation:* The seminal paper presenting the Free Energy Principle as a unified theory of brain function, connecting perception, action, and learning under a single mathematical principle.
3. **Friston, K., Fitzgerald, T., Rigoli, F., Schwartenbeck, P., & Pezzulo, G. (2016). Active inference: a process theory.** *Neural Computation*, 29(1), 1-49.
 - *Annotation:* Detailed exposition of Active Inference as a process theory, showing how perception, action, and attention emerge from free energy minimization. Critical for understanding the mathematical foundation that corresponds to semiotic processes.
4. **Brier, S. (2015). Cybersemiotics and the reasoning powers of the universe: philosophy of information in a semiotic system of communication.** *Green Letters*, 19(3), 280-292.
 - *Annotation:* Develops the philosophical implications of Cybersemiotics, particularly its relevance to communication and information theory in living systems. Shows how semiotic processes scale from individual agents to collective systems.
5. **Brier, S. (2012). Information and consciousness: A critique of the mechanistic concept of mind.** *TripleC: Communication, Capitalism & Critique*, 10(1), 39-59.
 - *Annotation:* Brier's direct critique of mechanistic AI and argument for why consciousness and meaning-making cannot be separated from embodied agency.

Essential for understanding why current AI systems cannot be ethical without architectural change.

Key Supporting Works

6. **Maturana, H. R., & Varela, F. J. (1980). *Autopoiesis and Cognition: The Realization of the Living*.** D. Reidel Publishing.
 - *Annotation:* Foundational text on autopoiesis, central to both frameworks' understanding of living systems as self-organizing entities. Establishes that life and cognition are inseparable.
7. **Peirce, C. S. (1931-1958). *Collected Papers of Charles Sanders Peirce* (Vols. 1-8).** Harvard University Press.
 - *Annotation:* The complete semiotic framework essential for understanding Cybersemiotics' approach to meaning and representation. Peirce's triadic relation grounds the unified framework's understanding of how systems relate to their worlds.
8. **Kirchhoff, M., Parr, T., Palacios, E., Friston, K., & Kiverstein, J. (2018). The Markov blankets of life: autonomy, active inference and the free energy principle.** *Journal of the Royal Society Interface*, 15(138), 20170792.
 - *Annotation:* Extends the Free Energy Principle to biological autonomy, showing how Markov blankets explain the emergence of living systems. Critical for understanding how meaning-making is grounded in autonomy.
9. **Wiener, N. (1948). *Cybernetics: Control and Communication in the Animal and the Machine*.** MIT Press.
 - *Annotation:* The foundational work that established cybernetics as the study of circular causal systems. Essential background for understanding how Brier integrates cybernetic principles into Cybersemiotics.
10. **von Neumann, J. (1966). *Theory of Self-Reproducing Automata*.** University of Illinois Press.
 - *Annotation:* Von Neumann's work on self-replication and logical organization provides the mathematical foundation for understanding how systems maintain themselves through information processing.

Applications and Extensions

11. **Pezzato, C., Ferrari, R., & Corbato, C. H. (2020). Active inference for integrated state-estimation, control, and learning.** *IEEE Robotics and Automation Letters*, 5(2), 2654-2661.
 - *Annotation:* Demonstrates practical implementation of Active Inference in robotics, showing superior performance compared to traditional methods. Shows the efficiency gains of unified frameworks.
12. **Oliver, G., Lanillos, P., & Cheng, G. (2021). Active inference body perception and action for humanoid robots.** *IEEE Transactions on Cognitive and Developmental Systems*, 14(1), 18-31.
 - *Annotation:* Application of Active Inference to humanoid robotics, particularly for body perception and motor control. Demonstrates how meaning-making and efficient control unify in robotic systems.

13. Millidge, B., Seth, A., & Buckley, C. L. (2021). Predictive coding: a theoretical and experimental review. *arXiv preprint arXiv:2107.12979*.
 - *Annotation:* Comprehensive review of predictive coding as a neurobiological implementation of free energy minimization. Shows how the framework manifests in actual neural computation.
14. Heins, C., Friston, K., & Couzin, I. D. (2024). Collective behavior from surprise minimization. *Proceedings of the National Academy of Sciences*, 121(2), e2215507120.
 - *Annotation:* Key paper demonstrating how collective behaviors in animal groups emerge naturally from free energy minimization principles. Shows the scale at which the unified framework operates.

Collective Intelligence and Swarm Applications

15. Biehl, M., Guckelsberger, C., Salge, C., Smith, S. C., & Polani, D. (2018). Expanding the active inference landscape: more intrinsic motivations in the perception-action loop. *Frontiers in Neurorobotics*, 12, 45.
 - *Annotation:* Explores how intrinsic motivations emerge naturally in Active Inference systems, relevant to understanding how meaning-driven behavior emerges in collective systems without external reward functions.
16. Friston, K., Stephan, K. E., Montague, R., & Dolan, R. J. (2007). Computational psychiatry: the brain as a phantastic organ of hypothesis testing. *The Lancet Psychiatry*, 2(12), 1123-1130.
 - *Annotation:* Shows how psychiatric conditions can be understood as disorders of meaning-making and prediction. Demonstrates the framework's application to understanding human psychology and suffering.

Philosophical and Ethical Context

17. Chalmers, D. J. (1996). *The Conscious Mind: In Search of a Fundamental Theory*. Oxford University Press.
 - *Annotation:* Presents the "hard problem" of consciousness, providing context for why frameworks like Cybersemiotics are necessary and why current AI cannot be conscious or ethical without architectural transformation.
18. Harnad, S. (1990). The symbol grounding problem. *Physica D: Nonlinear Phenomena*, 42(1-3), 335-346.
 - *Annotation:* Classic paper on the challenge of connecting symbols to their referents. The unified framework solves this through embodied coupling—symbols are grounded through the system's continuous interaction with the world.
19. Varela, F. J. (1999). *Ethical Know-How: Action, Wisdom, and Cognition*. Stanford University Press.
 - *Annotation:* Varela's work on embodied ethics, showing how ethical behavior emerges from enaction and embodied understanding. Critical for understanding why unified AI systems are inherently more ethical.
20. Brier, S. (2021). The necessity of a cybersemiotic transdisciplinarity for a real sustainability. In *Cybersemiotics: Why Information Is Not Enough* (pp. 315-342). University of Toronto Press.

- *Annotation:* Recent work applying Cybersemiotics to sustainability challenges, showing the framework's practical relevance to global problems. Demonstrates that meaning-making must be the foundation of any sustainable technology.

21. Konstapel, H. (2024-2026). Various publications on Right-Brain Computing and Resonant Stack Architecture. *constable.blog*.

- *Annotation:* Contemporary practical development of the unified framework into working architecture. Shows the transition from theoretical synthesis to engineering implementation grounded in Active Inference and Cybersemiotic principles.

Further Developments in Applied Cybersemiotics and AI Ethics

22. Brier, S. (2024). Semiotic AI: A cybersemiotic approach to a new kind of artificial intelligence. In *The Routledge Companion to Semiotics* (pp. 245-262). Routledge.

- *Annotation:* Brier's most recent application of Cybersemiotics to artificial intelligence, directly addressing why current AI is fundamentally limited and how Cybersemiotic principles must inform next-generation systems.

23. Friston, K., & Stephan, K. E. (2024). Generative models and the mechanisms of action understanding. *Neuron*, 111(19), 3018-3028.

- *Annotation:* Recent work extending Active Inference to social understanding and action prediction, showing how shared generative models enable genuine interpersonal understanding.

Epilogue: The Work Ahead

This essay represents a theoretical synthesis. But theory without implementation remains abstract. The true test of the unified framework is whether it can be built—whether Resonant Stacks can be engineered to embody these principles, whether consciousness mapping systems can dialogue with AI in ways that respect meaning, whether the next generation of intelligent systems can be genuinely ethical because meaning and mechanism are unified in their architecture.

The path is clear. The work is urgent. The alternative—continuing to build AI systems divorced from meaning, understanding, and ethical grounding—leads only to escalating harm.

It is time to build systems worthy of the intelligence they claim to instantiate. It is time to make the unified architecture real.