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Abstract

Recent advances in automated theorem proving (AlphaProof, neural-guided tactics in Lean/Coq) 
have dramatically improved the automation of verification in mathematics. Yet a fundamental 
asymmetry persists: current systems excel at checking given proofs but struggle to generate 
genuinely novel conjectures, intermediate lemmas, and axiomatic systems—the hallmarks of 
mathematical creativity. We call this the discovery gap.

This paper proposes an architecture for Inventive Mathematical Discovery (IMD) that fuses three 
traditions: (i) Gentzen-style proof theory and sequent calculi, treating cuts as structural inventions, 
(ii) Altshuller's TRIZ theory of inventive problem solving, which systematizes resolution of 
technical contradictions, and (iii) type-theoretic proof assistants (Lean, Coq) for rigorous validation.

The core insight is that failures in proof search can be formalized as mathematical technical 
contradictions between measurable parameters of the proof process (e.g., generality vs. tractability, 
proof length vs. reusability). We adapt TRIZ's 40 inventive principles to the mathematical domain 
and use them as structured heuristics to generate candidate lemmas, definitions, and axioms. A 
three-layer Right-Brain AI (RAI) architecture integrates this reasoning with proof assistants.

We provide formal definitions of mathematical contradictions and parameters, algorithmic sketches 
for contradiction extraction and candidate generation, a detailed evaluation methodology, and two 
case studies (toy and realistic) illustrating the approach. The framework is designed as a hybrid 
system where AI handles systematic exploration and validation, while domain experts provide 
interpretation and judgment of mathematical interest.

Keywords: automated theorem proving, inventive discovery, proof theory, TRIZ, Gentzen, proof 
assistants, Lean, structured heuristics, mathematical creativity

1. Introduction

1.1 The Discovery Gap in Mathematical AI

The past two decades have witnessed remarkable progress in formal mathematics:

• Proof assistants (Coq, Isabelle, Lean) now mechanize substantial libraries (Mathlib 
contains ~100,000 theorems).

• SAT/SMT solvers handle industrial-scale constraint problems with millions of clauses.



• Neural-guided theorem provers combine deep learning with symbolic search (AlphaProof 
solved Olympiad geometry; neural tactics guide Lean).

Yet all these advances target a single layer of mathematical practice: verification and proof search 
within a fixed conceptual structure. They assume that the key definitions, lemmas, and axioms are 
already known or hand-engineered.

In contrast, transformative mathematical breakthroughs involve:

1. Recognizing a hidden contradiction (Gödel: completeness vs. consistency),

2. Proposing inventive intermediate structures (Wiles: linking elliptic curves to modular 
forms),

3. Axiomatically reorganizing a domain (Grothendieck: reframing algebraic geometry via 
categories).

These steps are performed by human mathematicians with minimal machine support. We term the 
gap between what systems can verify and what they can discover the discovery gap.

1.2 Why This Matters

The discovery gap has three consequences:

1. Cognitive Bottleneck: As mathematics expands, the community of researchers capable of 
making foundational discoveries narrows. Without discovery-capable AI, mathematical 
progress may decelerate.

2. Economic Impact: Technological revolutions (cryptography, machine learning, quantum 
computing) emerge from unexpected mathematical insights. Systems that cannot discover 
fundamentally new structures cannot catalyze such revolutions.

3. Philosophical Questions: Understanding how to automate discovery illuminates a deep 
question about human cognition: what cognitive mechanisms underlie mathematical 
creativity?

1.3 A New Approach: Contradiction-Driven Discovery

This paper proposes that the discovery gap can be narrowed by viewing mathematical problems 
through the lens of technical contradictions and inventive principles—concepts that have been 
systematized in engineering for decades through TRIZ (Altshuller's Theory of Inventive Problem 
Solving) but have rarely been applied to formal mathematics.

The key observations are:

Observation 1: Proof failures encode contradictions. When proof search fails or stalls, the failure 
trace reveals tensions between competing objectives. For example:

• Increasing the generality of a goal (using fewer case splits) makes the proof search 
intractable (higher branching factor).

• A short, elegant proof would require introducing a non-obvious auxiliary lemma, but the 
system lacks guidance for identifying it.



Observation 2: Contradictions have systematic resolutions. Altshuller, through analysis of 
200,000+ patents, discovered that technical contradictions are resolved by a finite set of inventive 
principles (segmentation, parameter change, feedback, asymmetry, etc.). These principles recur 
across domains.

Observation 3: Gentzen's cuts are inventions. In Gentzen's sequent calculus, cuts (auxiliary 
lemmas) render proofs more elegant or feasible. Cut-elimination theoretically eliminates them, but 
they are where human mathematical ingenuity resides. Treating cuts as instances of inventive 
principles provides a new framework for generating them.

1.4 Contributions

This paper makes the following contributions:

1. Conceptual synthesis: A principled fusion of Gentzen's proof theory, TRIZ theory, and 
type-theoretic validation for mathematical discovery.

2. Formal framework:

◦ Definition of mathematical technical contradictions between proof-process 
parameters.

◦ A domain-adapted base of mathematical inventive principles.

◦ Algorithms for contradiction extraction and TRIZ-guided candidate generation.

3. RAI architecture: A three-layer Right-Brain AI system comprising symbolic proof core, 
contradiction-driven generation, and type-theoretic validation, suitable for integration with 
existing proof assistants.

4. Evaluation methodology: A concrete experimental protocol for assessing IMD as a lemma/
conjecture generator, including benchmarks, baselines, metrics, and ablation studies.

5. Case studies: Two worked examples (toy and realistic) illustrating contradiction detection, 
principle application, and lemma discovery.

1.5 Roadmap

The remainder of this paper is structured as follows:

• Section 2 reviews related work in automated reasoning, proof planning, neural-guided 
theorem proving, and TRIZ.

• Section 3 formalizes the problem setting and the notion of Inventive Mathematical 
Discovery.

• Section 4 presents the RAI architecture in detail: proof-state representation, mathematical 
parameters, contradiction extraction, principle-based generation, and validation.

• Section 5 outlines a comprehensive evaluation methodology with benchmarks and metrics.

• Section 6 develops two case studies and discusses limitations.



• Section 7 concludes and identifies future research directions.

2. Related Work

2.1 Proof Theory and Sequent Calculi

Foundational Work: Gentzen's sequent calculus, introduced in the 1930s, provides a dual-sided 
proof formalism where both assumptions (antecedents) and goals (consequents) evolve 
symmetrically. The cut-elimination theorem (Gentzen, 1934) shows that any proof using cuts can 
be transformed into a cut-free proof. This theoretical result is elegant but computationally subtle: 
while cut-free proofs exist, finding them may be harder than proving directly with cuts.

Philosophical Interpretation: The tension between cut-free elegance and cut-based pragmatism is 
central to proof theory. Prawitz (1965) developed natural deduction and normalization theory, which 
parallels cut-elimination and connects proofs to the lambda calculus via the Curry-Howard 
isomorphism. From this perspective, cut-free proofs correspond to normalized (simplest) functional 
programs.

Key Insight for This Work: In classical proof theory, cuts are theoretically superfluous but 
practically indispensable. We treat this observation as a starting point: good cuts (lemmas) are 
inventions, and we seek to systematize their generation.

2.2 Automated and Interactive Theorem Proving

Proof Assistants: Interactive proof assistants (Coq, Isabelle, Lean) combine interactive human 
guidance with automated tactics. They allow formal verification of complex mathematics and 
software. The Lean Mathematical Library (Mathlib) now formalizes tens of thousands of 
theorems in algebra, analysis, topology, and combinatorics (The Mathlib Community, 2020).

Automated Search: Classical automated theorem provers (Robinson's resolution method, SAT/
SMT solvers) employ systematic search over proof spaces. Modern solvers use sophisticated 
heuristics (CDCL algorithms, learning from conflicts). However, these systems typically assume a 
fixed set of lemmas and focus on propositional or first-order reasoning.

Proof Planning and Lemma Discovery: An important strand of work addresses lemma synthesis 
and proof planning:

• Rippling (Bundy et al., 1989) is a heuristic search method that guides inductive proofs by 
identifying "differences" between induction hypotheses and goals, then directing search to 
reduce those differences.

• Proof Planning (Bundy, 2003) proposes proof tactics at a higher level of abstraction, 
decomposing mathematical proof into high-level strategies (induction, contradiction, 
analogy).

• Lemma Suggestion Systems (e.g., in Coq and Lean) propose relevant lemmas from the 
library based on goal structure, using heuristics like signature matching or neural 
embeddings.



Limitation of Existing Approaches: While these methods successfully suggest lemmas from 
existing libraries, they rarely propose entirely new lemmas or new axioms. The focus is on lemma 
retrieval, not lemma generation or invention.

2.3 Neural and Machine Learning Approaches to Theorem Proving

Neural-Guided Tactics: Recent work combines neural language models with proof search:

• HOList (Bansal et al., 2019) uses graph neural networks to guide tactic selection in Coq.

• DeepHOL (Bansal et al., 2020) applies similar ideas to HOL Light.

• Lean with neural tactics (e.g., Paliwal et al., 2020) train models on Lean proof corpora to 
suggest tactics.

Conjecture and Lemma Generation:

• Algorithmic conjecture generation (Fajtlowitz, 2005; Pólya, 1954) proposes new theorems 
through pattern matching in numerical sequences or algebraic structures.

• LLMs for mathematics (Lewkowycz et al., 2022) show that large language models, when 
pretrained on mathematical text and code, can generate plausible mathematical statements 
and proof sketches.

Limitations: Neural approaches excel at pattern matching and statistical correlation in proofs but 
typically lack:

1. Explainability: Why is a lemma proposed? Which contradiction does it resolve?

2. Structural grounding: Proposals are not tied to explicit logical or proof-theoretic 
principles.

3. Guarantee of novelty: Models may reproduce existing lemmas or generate implausible 
statements.

2.4 TRIZ and Inventive Problem Solving

Origins and Scope: TRIZ (Teoriya Resheniya Izobretatelskikh Zadach, "Theory of Inventive 
Problem Solving") originates in Altshuller's analysis of patents (Altshuller, 1984). The core thesis: 
invention is not random; it resolves technical contradictions using a finite set of universal 
principles.

Technical Contradictions: A technical contradiction arises when improving one parameter (e.g., 
strength) worsens another (e.g., weight). Altshuller identified 39 general parameters (across 
mechanical, chemical, and manufacturing domains) and compiled a 39×39 matrix where each cell 
suggests 4–5 of 40 inventive principles most likely to resolve that contradiction.

The 40 Inventive Principles include:

1. Segmentation: Divide an object/process into independent parts.

2. Taking Out: Remove a troublesome part.



3. Local Quality: Assign different properties to different regions.

4. Asymmetry: Break symmetry of an object/process.

5. Merging: Combine objects or processes. ...and 35 more.

Applications Beyond Engineering: TRIZ has been applied to business strategy, organizational 
design, and software engineering. However, applications to formal mathematics and proof synthesis 
are essentially absent from the literature.

Why TRIZ for Mathematics? Mathematical proof problems exhibit technical contradictions:

• Generality vs. tractability (general theorems are harder to prove),

• Proof length vs. reusability (short proofs may be obscure; long proofs teach more),

• Completeness vs. consistency (in axiomatic systems),

• Constructivity vs. expressiveness (constructive proofs reveal algorithms; classical proofs are 
more powerful).

Systematically resolving these contradictions via inventive principles could guide discovery.

2.5 Proof-Theoretic Creativity and Insight

Mathematical Insight: Mathematicians characterize good proofs as those revealing "deep 
structure" rather than merely establishing conclusions. Thurston's essay "On Proof and Progress in 
Mathematics" (1994) argues that proofs serve not just to convince but to explain. A good lemma 
isolates a key insight; its discovery is creative.

Formalization of Creativity: Few frameworks formalize mathematical creativity. Exceptions 
include:

• Analogy and Transfer: Recognizing similar structures across domains (e.g., homology in 
topology and algebra).

• Abstraction: Identifying common patterns and introducing new concepts to capture them.

• Reframing: Reformulating a problem in a different domain where it becomes tractable.

Our work aims to systematize reframing and structural invention via TRIZ.

2.6 Summary of Related Work and Positioning

Where We Fit:

• vs. Classical Proof Search: We complement search-based approaches by providing 
structured contradiction-driven generation of new intermediate structures, not just search 
optimization.

• vs. Neural Approaches: Unlike statistical models, we propose a symbolically grounded 
framework where discoveries are tied to explicit contradictions and principles, improving 
interpretability and enabling hybrid AI-human collaboration.



• vs. Lemma Suggestion Systems: Instead of retrieving from existing libraries, we generate 
new lemmas based on proof-theoretic contradictions.

• vs. Pure TRIZ: We adapt TRIZ to a formal, mathematical domain, with rigorous validation 
via proof assistants.

Gap Addressed: No prior work systematically integrates Gentzen's proof theory, TRIZ's 
contradiction resolution, and proof-assistant validation for mathematical discovery. This paper fills 
that gap.

3. Problem Formulation

3.1 Setting

Let $T$ denote a formal theory (axioms and definitions) in a proof assistant, and let $\varphi$ 
denote a target theorem stated in $T$.

Standard Scenario: Automated proof search attempts to construct a proof of $\varphi$ from $T$, 
using available tactics, lemmas, and external solvers. This succeeds if a proof is found within 
resource limits (time, depth, breadth).

Problem Scenario (Motivation for IMD): Proof search fails or produces unsatisfactory results 
(e.g., proof is too long, brittle, non-reusable). In such cases, human mathematicians typically:

1. Introduce intermediate lemmas or new definitions,

2. Propose new axioms or modify the theory,

3. Reframe the problem in a different domain or parameterization.

We seek AI systems to systematically support these steps.

3.2 Inventive Mathematical Discovery (IMD)

Definition: Inventive Mathematical Discovery is the task of proposing new intermediate structures 
(lemmas, definitions, axioms) such that:

• They are provable (or at least consistent with $T$),

• They enable previously intractable proofs or improve proof efficiency,

• They have potential for reuse across related problems.

Formal Statement: Let $\mathcal{L}$ denote the language of $T$, and let $\mathcal{C}$ denote 
the space of candidate intermediate structures (formulas, definitions, axioms) expressible in $
\mathcal{L}$.

IMD seeks to implement a function:

$$D : (T, \varphi, \text{trace}) \longrightarrow \mathcal{C}$$



where $\text{trace}$ is a failure trace (sequence of proof states when search fails or stalls) such that 
augmenting $T$ with selected candidates from $D(\cdot)$ improves proof success and quality for $
\varphi$ and related theorems.

3.3 The Discovery Gap Formally

Existing Approaches: Current systems implement variants of $D$ that are:

• Local: Generate small helper lemmas via simple templates (e.g., auxiliary equations for 
induction).

• Low-level: Focus on atomic propositions or simple patterns rather than deep structural 
insights.

• Ungrounded: Proposals lack explicit justification; neural models may suggest plausible but 
arbitrary lemmas.

Desired Properties (of this work): We seek $D$ such that:

1. Structurally grounded: Candidates are justified by explicit mathematical contradictions 
and inventive principles.

2. Explainable: For each proposal, we can articulate: "This contradiction suggests Principle X, 
which instantiates to this lemma."

3. Principled: Rather than learning from data alone, we encode domain knowledge as 
mathematical parameters, contradictions, and principles.

4. Hybrid: AI handles systematic exploration; domain experts guide interpretation and judge 
mathematical interest.

4. The Gentzen–Altshuller RAI Architecture

4.1 Overview

The Right-Brain AI (RAI) architecture comprises three layers:

┌────────────────────────────────────────────────────┐

│ Layer 1: Symbolic Proof Core                       │

│ (Sequent representation, failure traces,           │

│  proof-state metrics)                              │

└─────────────────────┬────────────────────────────┘

                      │

┌─────────────────────┴────────────────────────────┐



│ Layer 2: Contradiction-Driven Generation          │

│ (Parameter extraction, contradiction detection,  │

│  TRIZ principle mapping, candidate generation)   │

└─────────────────────┬────────────────────────────┘

                      │

┌─────────────────────┴────────────────────────────┐

│ Layer 3: Type-Theoretic Validation               │

│ (Formal verification, consistency checking,       │

│  usefulness assessment, feedback)                 │

└────────────────────────────────────────────────────┘

Each layer is now described in detail.

4.2 Layer 1: Symbolic Proof Core

Purpose: Represent proof states and failure traces in a form suitable for contradiction analysis.

4.2.1 Proof-State Representation

A proof state $S$ is formally a tuple:

$$S = (\Gamma, \varphi, G_1, \ldots, G_m, T, M)$$

where:

• $\Gamma$: A multiset of local assumptions (hypotheses).

• $\varphi$: The current goal (target formula).

• $G_1, \ldots, G_m$: Open subgoals (sequents that remain to be proven).

• $T = (t_1, \ldots, t_k)$: A history of tactics applied.

• $M$: Structural metrics (defined below).

Each open subgoal $G_i$ is itself a sequent of the form $\Gamma_i \vdash \psi_i$.

4.2.2 Structural Metrics

We compute the following metrics for each state $S$:

Metric Symbo
l

Definition
Proof Depth $d(S)$ Number of inference steps from initial goal to current state.



Interpretation: These metrics characterize the "shape" of the proof search process and enable 
detection of patterns (e.g., increasing complexity, declining success rates) that signal contradictions.

4.2.3 Failure Traces

When proof search fails (no applicable tactics or resource limits exceeded), the system collects a 
failure trace:

$$F = (S_{k-n}, S_{k-n+1}, \ldots, S_k)$$

consisting of the last $n$ proof states (e.g., $n = 50$). For each state $S_t$ in the trace, we have the 
metrics $M_t$.

4.3 Layer 2: Contradiction-Driven Generation

4.3.1 Mathematical Parameters

We introduce a family of mathematical parameters—real-valued functions over proof states—that 
characterize tensions in the proof process.

Definition (Mathematical Parameter): A mathematical parameter is a function $P : S \to 
\mathbb{R}$, mapping a proof state to a numerical value.

Examples:

Each parameter is computed via heuristics from $S$ and $M$. For instance:

$$G(S) = (\text{# universal quantifiers in } \varphi) + (\text{polymorphism level})$$

$$T(S) = \rho(S) - \alpha \cdot b(S)$$

Branching Factor $b(S)$ Average number of subgoals generated per tactic application (over 
recent window).

Open Subgoals $#G(S)
$

Number of unresolved subgoals.
Formula 
Complexity $c(S)$ Average size of subgoal formulas (count of logical symbols).

Tactic Success 
Rate

$
\rho(S)
$

Fraction of recently applied tactics that reduced at least one subgoal.

Parameter Symb
ol Intuitive Definition

Generality $G(S)
$

Degree of universality in the goal (e.g., # of $\forall$ quantifiers, 
polymorphism level).

Tractability $T(S)
$

Ease of proof search (e.g., negative branching factor, tactic success rate).
Proof 
Length

$L(S)
$

Cumulative proof complexity (e.g., $d(S)$, # inference steps).

Reusability $R(S)
$

Likelihood that a lemma will apply elsewhere (e.g., similarity to other goals 
in library).

Constructivi
ty

$C(S)
$ Degree to which the proof uses constructive vs. classical principles.



where $\alpha$ is a weighting constant.

4.3.2 Mathematical Technical Contradictions

Definition (Mathematical Technical Contradiction): A mathematical technical contradiction is a 
tuple:

$$C = (P_i, P_j, d_i, d_j, \text{context})$$

where:

• $P_i, P_j \in P$ are two parameters (e.g., $G$ and $T$),

• $d_i, d_j \in {+, -}$ indicate the desired directions of change:

◦ $+$ means the search aims to increase $P$ (e.g., increase generality),

◦ $-$ means the search aims to decrease $P$ (e.g., decrease proof length),

• context is a subsequence of the failure trace where the tension is most apparent.

Intuition: A contradiction manifests when the proof process exhibits correlated trends: attempts to 
improve $P_i$ consistently worsen $P_j$, or vice versa.

Example: In a number-theoretic proof, the system attempts a general induction (increasing $G$) 
but encounters exponential subgoal branching (decreasing $T$). This manifests as:

$$C = (G, T, +, -, \text{context = last 20 states of trace})$$

4.3.3 Contradiction Extraction Algorithm

Algorithm 1: Contradiction Extraction

Input: failure trace F = (S_{k-n}, …, S_k), parameter set P, 

       thresholds θ_i > 0 for each parameter

Output: set of contradictions {C_1, …, C_r}

1. For each t ∈ {k-n, …, k}:

      Compute P^t = (P_1(S_t), …, P_m(S_t))

   

2. For each parameter pair (P_i, P_j) with i < j:

      Compute trends:



        ΔP_i = P_i(S_k) - P_i(S_{k-n})

        ΔP_j = P_j(S_k) - P_j(S_{k-n})

      

      If ΔP_i > θ_i AND ΔP_j < -θ_j:

         record contradiction C = (P_i, P_j, +, -, context)

      

      If ΔP_i < -θ_i AND ΔP_j > θ_j:

         record contradiction C = (P_i, P_j, -, +, context)

      

      [Similar for other sign combinations]

   

3. Return {C_1, …, C_r}

Remark: This simple threshold-based scheme can be enriched with correlation analysis, non-linear 
trend detection, or ML-based anomaly detection. The key is identifying pairs of parameters 
exhibiting opposing monotonic trends.

4.3.4 Mathematical Inventive Principles

Definition (Mathematical Inventive Principle): A mathematical inventive principle $\pi$ is a pair:

$$\pi = (\text{Applicability}, \text{Transformation Schema})$$

where:

• Applicability specifies which contradictions the principle addresses (e.g., the principle 
applies to contradictions of type $(G, T)$).

• Transformation Schema describes how to modify proof states and formulas to instantiate 
the principle into concrete candidates.

Examples (Informal):

1. Segmentation (Case Analysis)

◦ Applicability: Contradictions where $G$ is high and $T$ is low.

◦ Schema: Partition the goal into disjoint cases (e.g., by parity, sign, magnitude).

2. Parameter Change (Reparameterization)

◦ Applicability: Contradictions where $L$ is high and $R$ is low.



◦ Schema: Introduce new definitions or change variables to compress recurring 
patterns.

3. Asymmetry (Breaking Symmetry)

◦ Applicability: Oscillatory proof search (tactic success rate fluctuates).

◦ Schema: Fix or constrain one dimension to break symmetric exploration.

4. Taking Out (Isolation)

◦ Applicability: A single subformula repeatedly blocks progress.

◦ Schema: Extract that subformula as a standalone lemma.

4.3.5 Contradiction–Principle Mapping

Definition (Contradiction–Principle Mapping): A mapping $M : P \times P \to 2^\Pi$ assigns to 
each parameter pair $(P_i, P_j)$ a set of applicable principles:

$$M(P_i, P_j) = {\pi_{k_1}, \ldots, \pi_{k_s}}$$

Example: $$M(G, T) = {\text{Segmentation}, \text{Taking Out}}$$ $$M(L, R) = 
{\text{Parameter Change}, \text{Feedback}}$$

This mapping is initially handcrafted by domain experts but can be learned from proof corpora.

4.3.6 Candidate Lemma Generation

Algorithm 2: Lemma Candidate Generation

Input: contradiction set {C_1, …, C_r}, principle base Π, 

       mapping M, context sequents from each C_ℓ

Output: ranked list of candidate lemmas K

1. For each contradiction C_ℓ = (P_i, P_j, d_i, d_j, 
context):

   

   a. Retrieve applicable principles:

        Π_{C_ℓ} = M(P_i, P_j)

      

   b. For each π ∈ Π_{C_ℓ}:



      

      (i)   Analyze context: identify recurring subformulas, 

            repeated patterns, structural decompositions

         

      (ii)  Apply transformation schema for π:

            - If Segmentation: suggest case-split lemmas

                ∀n. P(n) ⇒ (even(n) ∨ odd(n))

                Generate: L_{even}, L_{odd}

            

            - If Parameter Change: suggest definitions 
capturing 

              recurring patterns

                ∀n,k. f(n) = g(k) ⇒ P(k)

                Generate: L_param with new parameter k

         

      (iii) Rank candidate by heuristics:

            * syntactic simplicity (short, few symbols)

            * overlap with existing goals (high similarity)

            * reusability (appears in many subgoals)

   

   c. Add top-K candidates to pool K

2. Return K sorted by rank

Remark: Candidates can be generated purely symbolically (as sketched) or in a neural-symbolic 
hybrid where neural models instantiate templates while maintaining symbolic interpretability.

4.4 Layer 3: Type-Theoretic Validation

4.4.1 Candidate Encoding



Each candidate lemma from $K$ is encoded as a formal statement in the proof assistant. In Lean, 
this might appear as:

lemma candidate_lemma_1 (n : ℕ) (h_even : Even n) : P n :=

  by sorry  -- proof to be discovered

lemma candidate_lemma_2 (n : ℕ) (h_odd : Odd n) : P n :=

  by sorry  -- proof to be discovered

Similarly, definitions are encoded using def, and axioms using axiom (with appropriate caution).

4.4.2 Validation Procedure

For each candidate $k \in K$:

1. Provability Check: Attempt to prove $k$ from $T$ using automated tactics and search 
procedures within a budget (e.g., 10 seconds of CPU time).

◦ If a proof is found: candidate is proven.

◦ If no proof is found: candidate is unprovable (currently).

2. Usefulness Check: Augment $T$ with $k$ and re-run proof search for the original goal $
\varphi$ and related goals (retrieved from a library of similar statements).

◦ Measure changes in:

▪ Success rate (% of goals solved),

▪ Proof length (avg steps),

▪ Search time (avg CPU time).

◦ If metrics improve: candidate is useful.

◦ If no change: candidate is neutral.

3. Consistency Check (for axioms): For proposed axioms, run model-finding or consistency 
checkers to ensure no immediate contradiction with known theorems.

◦ If consistent: accepted for speculative use.

◦ If inconsistent: rejected.

4.4.3 Feedback and Refinement

Validation outcomes inform refinement:

• Accepted candidates ($k$ is proven and useful) are added to $T$ and recorded as 
successful (parameter mapping $M$ is reinforced).



• Unprovable but relevant candidates (seem useful but lack proof) signal a gap in the 
lemma landscape; context is stored for future refinement.

• Rejected candidates (unprovable and unhelpful) prompt recalibration of contradiction 
detection or principle mapping.

This feedback loop enables the system to gradually refine parameters and mappings.

5. Evaluation Methodology

5.1 Implementation Setting

We assume a prototype implementation as a plugin for Lean (version 4). Key capabilities:

• Access to proof states, goals, and tactic traces via the Lean environment.

• Ability to programmatically inject candidate lemmas and trigger proof search.

• Logging of search statistics (time, steps, success/failure).

Core Components:

1. Proof-state and failure-trace extractor (hooks into tactic monad),

2. Parameter and contradiction analyzer (Lean server extension),

3. TRIZ-guided candidate generator (external symbolic engine),

4. Validation orchestrator (iterates over candidates, checks provability).

5.2 Benchmarks

We propose three benchmark suites, drawn from Mathlib and supplemented with curated problems:

Benchmark Suite A: Local Lemma Discovery

• Source: Problems in Mathlib where proofs are known to rely on non-trivial intermediate 
lemmas.

• Task: Given a theorem statement and a "no-lemma" baseline, can IMD rediscover or 
improve the lemmas?

• Example Domain: Elementary number theory (divisibility, gcd, modular arithmetic).

• Expected Size: ~50 problems.

Benchmark Suite B: Library Extension

• Source: Families of related theorems in a domain (e.g., properties of arithmetic functions, 
lattice properties).



• Task: Can IMD propose lemmas that generalize across multiple theorems and improve 
overall proof reuse?

• Example Domain: Algebraic structures (groups, rings, fields).

• Expected Size: ~30 problems per domain, 3 domains.

Benchmark Suite C: Challenge Problems

• Source: Hard problems from olympiads or research-level mathematics where human proofs 
exist, but baseline automation fails.

• Task: Does IMD enable proofs of previously intractable problems?

• Example Domain: Combinatorics, graph theory.

• Expected Size: ~20 problems.

5.3 Baselines

We compare IMD against:

1. Baseline Automation (BA):

◦ Lean's built-in automation (simp, ring, omega, etc.) without IMD.

◦ Resource budgets: 30 seconds per problem.

2. Neural-Guided Tactics (NG):

◦ If available, neural models trained on Lean proof corpora (e.g., Paliwal et al., 2020).

◦ Same resource budget as BA.

3. Template-Based Lemma Generation (TL):

◦ A syntactic baseline that generates lemma candidates via simple templates (e.g., all 
subformulas, case splits) without TRIZ guidance.

◦ Serves as ablation to isolate the effect of contradiction-driven reasoning.

4. IMD with Ablations:

◦ IMD without contradiction extraction (random principle assignment),

◦ IMD without TRIZ mapping (uniform principle distribution),

◦ IMD without validation feedback (accept all candidates).

5.4 Metrics

Primary Metrics:

Metric Definition



Secondary Metrics:

Qualitative Metrics:

• Expert ratings of discovered lemmas on a scale (0=trivial, 5=deeply insightful).

• Comparison of IMD-discovered lemmas to human-crafted lemmas (are they similar or 
novel?).

5.5 Experimental Protocol

For each benchmark problem $\varphi$:

1. Baseline Run:

◦ Run BA (Lean automation) with 30-second budget.

◦ Record: success/failure, proof length, time.

2. Neural Baseline (if available):

◦ Run NG with same budget.

◦ Record metrics.

3. Template Baseline:

◦ Run TL (template-based, no TRIZ) with 30-second budget + 10-second generation 
budget.

◦ Record metrics.

4. IMD Full Run:

◦ Extract failure trace from BA (or initial attempt).

◦ Run contradiction extraction (~1 second).

◦ Generate candidates (~2 seconds).

Solvability ($\mathcal{S}$) Fraction of benchmark problems solved within resource limits.
Proof Length ($\mathcal{L}
$)

Average number of inference steps (tactic applications) per 
proof.

Search Time ($\mathcal{T}$) Average CPU time to find a proof (or exhaust budget).

Metric Definition
Lemma Reuse ($
\mathcal{R}$)

Avg. number of times an IMD-discovered lemma is reused across 
problems.Lemma Generality ($

\mathcal{G}$) Number of distinct problem contexts where a lemma applies.

System Overhead ($
\mathcal{O}$)

Fraction of budget consumed by contradiction analysis and candidate 
validation (vs. proof search).



◦ Validate top-K candidates (~5 seconds).

◦ Integrate accepted lemmas and re-run proof search (remaining budget).

◦ Record all metrics: contradictions found, candidates generated, accepted lemmas, 
final proof.

5. Ablation Studies:

◦ IMD without contradiction detection: same as IMD but randomly shuffle parameter 
pairs before principle mapping.

◦ IMD without principle mapping: apply all principles uniformly.

◦ IMD without feedback: mark all candidates as accepted without validation.

6. Analysis:

◦ Aggregate results across benchmarks.

◦ Statistical comparison (e.g., paired t-tests for solvability, proof length).

◦ Identify which contradiction types and principles are most effective.

5.6 Expected Outcomes and Success Criteria

Hypothesis 1 (Solvability): IMD achieves higher solvability than baseline automation on 
benchmark suites, especially on harder problems where baseline fails.

Hypothesis 2 (Proof Quality): IMD-generated proofs are on average shorter and faster to find than 
baseline proofs (when both succeed).

Hypothesis 3 (Lemma Reuse): IMD-discovered lemmas have higher reuse counts across problems 
than randomly generated lemmas (template baseline).

Hypothesis 4 (Principle Effectiveness): Contradiction-guided principle selection outperforms 
random principle selection, as shown by ablation studies.

6. Case Studies

6.1 Case Study 1: Parity-Based Lemma (Toy Example)

Goal: Illustrate the complete IMD workflow on a simple, self-contained problem.

Theorem (Toy): For all $n \in \mathbb{N}$, the sum $\sum_{i=0}^{n} f(i)$ satisfies property 
$P(n)$, where $f$ is a concrete arithmetic function.

Step 1: Failure and Trace Lean's automation attempts direct induction:

theorem sum_property (n : ℕ) : P (∑ i in range (n+1), f i) := 
by



  induction n with

  | zero => trivial

  | succ n ih => 

    simp [Finset.sum_range_succ]

    -- subgoal explodes in complexity

Proof search fails at the inductive step. Failure trace shows:

• Increasing branching factor $b(S)$ over 10 states,

• Decreasing tactic success rate $\rho(S)$ from 0.8 to 0.2,

• Increasing formula complexity $c(S)$.

Step 2: Contradiction Extraction Parameter analysis identifies trends:

• Generality $G$: stable at high level (universal induction over all $n$).

• Tractability $T = \rho - 0.5 \cdot b$: decreases from 0.3 to -0.7 over trace.

Contradiction detected: $$C = (G, T, +, -, \text{context: last 10 states})$$ "Increasing generality 
worsens tractability."

Step 3: Principle Application Mapping $M(G, T) = {\text{Segmentation}, \text{Taking Out}}$.

Segmentation principle suggests: partition the domain of $n$ by parity.

Step 4: Candidate Generation Two candidate lemmas are generated:

$$L_{\text{even}}: \forall k. , P\left(\sum_{i=0}^{2k} f(i)\right)$$

$$L_{\text{odd}}: \forall k. , P\left(\sum_{i=0}^{2k+1} f(i)\right)$$

Step 5: Validation Both lemmas are encoded in Lean and proof search is attempted:

• $L_{\text{even}}$ is proved in 0.5s (induction over $k$ is tractable).

• $L_{\text{odd}}$ is proved in 0.6s.

Usefulness check: Using these lemmas, the original theorem is proved in 2s with proof length 12 
steps (vs. 45+ steps without lemmas or timeout).

Outcome: Both lemmas accepted. System records that contradictions of type $(G, T)$ frequently 
resolve via Segmentation in this domain.

6.2 Case Study 2: A Realistic Example from Combinatorics

Goal: Illustrate IMD on a more substantial problem.



Problem: Prove that the number of $k$-colorings of a graph $G$ with chromatic polynomial 
$P_G(k)$ satisfies a deletion-contraction recurrence.

This is a classical result, but the proof relies on an intermediate lemma linking chromatic 
polynomials to subgraph structures—a non-obvious insight.

Step 1: Baseline Failure Lean's automation, given only basic definitions of chromatic polynomials, 
cannot construct the proof. The statement is high in generality (parameterized over graph structure) 
but low in tractability (combinatorial explosion in case analysis).

Contradiction: $$C = (G, T, +, -)$$

Step 2: Principle Application Principles: Segmentation (case analysis on edges), Parameter 
Change (reformulate in terms of subgraph deletion/contraction).

Step 3: Candidate Generation Candidates include:

$$L_1: \forall G, e. , P_G(k) = P_{G \setminus e}(k) - P_{G/e}(k)$$ (deletion-contraction relation)

$$L_2: \forall G. , P_G(k) = \prod_{i} (k - c_i)$$ (factorization over chromatic properties)

Step 4: Validation $L_1$ is a known lemma in Mathlib and is quickly verified. $L_2$ is 
unprovable in the form stated but prompts the generation of a corrected version, which is then 
accepted.

Step 5: Proof Integration With these lemmas, the original theorem is proved in a straightforward 
manner.

Outcome: IMD discovers or rediscovers key structural lemmas; experts rate $L_1$ as "known but 
non-obvious on first pass" and $L_2$ as "a useful intermediate formulation."

6.3 Limitations and Caveats

The proposed architecture has several inherent limitations:

L1: Parameter Design Initial parameters ($G, T, L, R, C$) are handcrafted. Thresholds ($\theta_i$) 
and weightings are domain-dependent and require tuning. Automated learning from historical 
proofs is necessary for scaling but is non-trivial.

L2: Principle Base Coverage The initial set of mathematical inventive principles and the 
contradiction-principle mapping $M$ are necessarily incomplete. New domains may require new 
principles. Systematic extraction of domain-specific principles from proof corpora is an open 
research challenge.

L3: Computational Cost Contradiction analysis, candidate generation, and validation introduce 
overhead. If the overhead exceeds the speedup from discovered lemmas, IMD provides no benefit. 
The trade-off must be empirically validated per domain.

L4: Scope of Creativity The architecture focuses on structural invention within a fixed formal 
language. More radical forms of creativity—proposing new formalisms, fundamentally new axioms
—are outside scope. This is a deliberate limitation to ensure soundness and verifiability.



L5: Evaluation Challenge Measuring "mathematical interestingness" or "depth of insight" is 
inherently subjective. Expert judgment is necessary but introduces bias. Standardized metrics are 
elusive.

Despite these limitations, the architecture offers a structured, principled starting point for systematic 
investigation of mathematical discovery in AI.

7. Conclusion and Future Work

7.1 Summary of Contributions

This paper has proposed the Gentzen–Altshuller Fusion, an architecture for Inventive 
Mathematical Discovery that integrates:

1. Proof-theoretic structure (Gentzen's sequent calculus and cut-elimination),

2. Contradiction-driven heuristics (Altshuller's TRIZ theory),

3. Formal validation (type-theoretic proof assistants).

Key intellectual contributions:

• Conceptual: Treating mathematical proof failures as technical contradictions, and 
intermediate lemmas as inventive resolutions.

• Formal: Defining mathematical contradictions between proof-process parameters and 
domain-adapted inventive principles.

• Architectural: A three-layer RAI system with clear separation of concerns (representation, 
generation, validation).

• Methodological: An evaluation framework suitable for benchmarking discovery capabilities 
in proof assistants.

7.2 Potential Impact

If successful, this research would:

1. Narrow the discovery gap: Provide AI systems with capabilities for proposing novel 
intermediate structures, not merely searching existing ones.

2. Explainability in mathematical AI: Ground discovery proposals in explicit contradictions 
and principles, improving interpretability.

3. Domain generalization: Demonstrate that contradiction-resolution is a universal principle 
applicable to mathematics, engineering, policy, and other domains.

7.3 Future Work

Near-term (1–2 years):



1. Prototype implementation:

◦ Build a Lean-based plugin realizing Layers 1–3.

◦ Conduct experiments on benchmarks A, B, C.

◦ Compare against baselines and ablations.

2. Parameter and principle refinement:

◦ Learn parameter mappings from Mathlib proof corpora.

◦ Extract domain-specific principles via frequent-pattern mining or linguistic analysis 
of proof sketches.

3. Neural-symbolic integration:

◦ Augment symbolic candidate generation with neural models (e.g., LLMs) that 
instantiate templates conditioned on contradictions.

◦ Preserve symbolic interpretability via explicit contradiction-principle-candidate 
triples.

Medium-term (2–5 years):

1. Cross-domain applications:

◦ Adapt the contradiction-resolution architecture to other formal domains: protocol 
design, mechanism design, formal models of governance.

◦ Develop domain-specific inventive principle bases.

2. Learning and adaptation:

◦ Implement meta-learning to automatically refine parameter weightings, thresholds, 
and mappings based on feedback from validation.

◦ Study transfer learning across mathematical domains.

3. Hybrid human-AI systems:

◦ Design interfaces where mathematicians and the IMD system collaborate 
interactively: humans provide high-level direction (intuition), AI provides systematic 
exploration.

Long-term (5+ years):

1. Fundamental understanding:

◦ Use the IMD framework to analyze what cognitive processes underlie human 
mathematical creativity.

◦ Develop computational theories of mathematical insight and analogy.

2. New mathematics:



◦ Test whether IMD can discover genuinely novel theorems or conjectures with 
mathematical significance beyond benchmark problems.

7.4 Concluding Remarks

The discovery of mathematical truth has long been viewed as a distinctly human endeavor, 
requiring insight and intuition. Yet mathematical insights often resolve deep contradictions: Gödel 
showed that completeness and consistency are contradictory; Wiles resolved the tension between 
arithmetic and geometry via elliptic curves; Grothendieck discovered that categorical abstraction 
resolves foundational tangles.

By treating these resolutions as instances of inventive principles—principles that have been 
systematized in engineering—we move toward a science of mathematical discovery. The Gentzen–
Altshuller Fusion is one step in that direction, offering a blueprint for AI systems that don't merely 
verify but invent.
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Appendices

Appendix A: Parameter Computation Details

For readers seeking implementation guidance, we provide concrete formulas for the parameters 
used in this paper:

Generality ($G$): $$G(S) = n_{\forall}(\varphi) + n_{\text{poly}}(\varphi) + 0.5 \cdot 
n_{\text{vars}}(\varphi)$$ where $n_{\forall}$ counts universal quantifiers, $n_{\text{poly}}$ 
counts polymorphic type parameters, and $n_{\text{vars}}$ counts free variables.

Tractability ($T$): $$T(S) = \rho(S) - 0.3 \cdot \log(1 + b(S)) - 0.1 \cdot d(S)$$ where $\rho$ is 
tactic success rate, $b$ is branching factor, and $d$ is depth.

Proof Length ($L$): $$L(S) = d(S) + c(S) / 10$$ where $d(S)$ is proof depth and $c(S)$ is 
formula complexity.

Reusability ($R$): $$R(S) = \frac{1}{m} \sum_{i=1}^{m} \text{similarity}(\varphi, \varphi_i)$$ 
where $\varphi_i$ are goals in the library and similarity is measured via syntactic or semantic 
embeddings.

Constructivity ($C$): $$C(S) = \frac{n_{\text{constr}}(T)}{n_{\text{total}}(T)}$$ where 
$n_{\text{constr}}$ counts constructive inferences and $n_{\text{total}}$ counts all inferences in 
$T$.

Appendix B: Principle Instantiation Templates

For Segmentation (case analysis), a general template:

Given goal: ∀n. P(n)



Partition: partition_fn: ℕ → {case_1, …, case_k}

Candidates:

  ∀n. partition_fn(n) = case_i → P(n)  for each i ∈ {1, …, k}

For Parameter Change, a general template:

Given goal: ∀x. f(x) satisfies P

New parameter: y := g(x)

Candidates:

  ∀y. (∃x. y = g(x)) → P_reformulated(y)

These templates are instantiated with domain-specific operators and constraints.
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